
DevOps eGuide

Page 1 of 14

eGuide
In This DevOps eGuide

DevOps, that critical intersection between development and operations, has moved into the spotlight of late. While developers and IT professionals
have been coexisting for decades, DevOps as a formally recognized practice is relatively new and the inventory of reliable resources exploring how to
innervate this movement is still rather sparse. This eGuide provides information you need both to start the DevOps conversation in your organization
and to continue the momentum as the industry learns to navigate and strengthen the relationship between the development and IT groups.

DevOps

www.techwell.com

DevOps eGuide

Page 2 of 14

Overcome DevOps Adoption Barriers
to Accelerate Software Delivery
By Chris Haddad

Responsive IT teams overcome software delivery
challenges and deliver projects at the speed of
business. They work toward simplifying the devel-
opment and operational experience and shorten-
ing project cycle times. DevOps and platform as a
service (PaaS) promises to change IT dynamics and
create a more responsive IT environment.

Every team can improve its delivery speed. Teams
usually face long lead times before project delivery,
expensive solution price tags, and uneven policy
compliance. DevOps proponents position principles
and practices as the solution.

Barriers to DevOps Improvement
Adopting DevOps principles and practices is not

easy. Common barriers include overcoming frag-
mented collaboration practices, discarding out-
dated IT infrastructure, and replacing previously
manual and calcified processes with automated
and streamlined pipelines. Without a preintegrated
DevOps environment, teams often work for months
building an effective tool chain. The DevOps tool
chain environment is usually compatible with only
a single project template, single run-time envi-
ronment, or single team. Scaling DevOps requires
establishing an environment that can be adopted
across multiple project teams and runtimes.

The Path to Responsive IT =
DevOps andPaaS
The path to responsive IT requires moving away

from traditional application platforms, team struc-
ture, and information flows. Responsive IT teams
reinvent the application platform and reshape
solution delivery. Their architecture intelligently
incorporates cloud platforms and DevOps.

Reinvent the application platform
A DevOps-oriented application platform unifies
DevOps practices, agile delivery, and PaaS to deliv-
er a consistent, automated, governed, and unified
application development lifecycle.

The platform should automate governance and
enforce policies. Cloud provisioning should fulfill
deployment requirements across all service provid-
ers and technologies used by delivery teams. The
platform delivers on-demand self-service access

Every team can improve
its delivery speed.

www.techwell.com

DevOps eGuide

Page 3 of 14

across a standard IT and business service catalogue.
The platform should help teams enforce compli-
ance and best practices. For example, governance
stakeholders may configure an approval process
that includes review gates, approval checklist items,
and automated test execution. Because the plat-
form automatically provisions design-time and run-
time assets, teams can rapidly deploy projects into
a pre-certified run-time environment that ensures
use of approved frameworks and services.

Teams reshape development and operations
with DevOps
DevOps principles reshape activities to become
iterative, incremental, continuous, automated,
self-service, and collaborative. Responsive teams
adopt DevOps practices of self-service configu-
ration, automated provisioning, continuous build,
continuous integration, continuous delivery, au-
tomated release management, and incremental
testing. Figure 1 illustrates how teams are thinking
holistically about the entire application lifecycle,
and integrate stand-alone activities into an orches-
trated, iterative cycle.

Launch Pad

Responsive IT teams rapidly deliver high-quali-
ty software. Unfortunately, most IT teams do not
have an environment fostering the rapid iteration,
streamlined workflow, and effective collaboration
required to operate at the speed of now and cap-
ture business opportunity.

Disconnected tooling, static environment deploy-
ment, and heavyweight governance often impede
rapid software cycles, minimize delivery visibility,
and prohibit innovative experimentation.

A new, more responsive model is required. When
teams increase agility and reduce time to market
by adopting agile software development practices,
DevOps principles, and cloud self-service platforms,
they choose a development and operations environ-
ment that accelerates software delivery.

Figure 1. The Full DevOps Lifecycle

www.techwell.com

DevOps eGuide

Page 4 of 14

DevOps is more than just a buzzword; it’s about de-
livering value to customers faster and more reliably.
Over and over again I have witnessed organiza-
tions that seem to go out of their way to introduce
practices that seem designed to stop value being

delivered efficiently. In the ten years that I’ve spent
developing and releasing apps, I’ve learned that
there are critical steps every IT organization should
follow that ensure DevOps success.

While many of these may seem obvious, experience
has taught me that at least one or more of these
steps are overlooked. In this article, I will explain
eight common mistakes organizations make that
can dramatically increase cycle time and slow the
flow of releases to customers, which is counter to
the goals of DevOps.

1. Not Planning for Scale
Think long term when you embark on the process
of bringing development and operations closer
together. Create processes that will scale from day
one. An example of a process that won’t scale is
having a single gatekeeper to approve all changes
in an automated process. Having a single person

able to approve work may work with a few releases
per year but that person will become a bottleneck if
there are many releases per week. If you’re suc-
cessful, you’ll need to scale faster than you ever
imagined. Not planning for scale is a fundamental

problem I’ve seen over and over again. Simply put,
even if you have amazing success when there isn’t
as much work going through the system, if your
processes don’t scale, the processes will quickly
become a bottleneck. Allies may quickly become
disillusioned and your DevOps initiative may be
seen as something that only works for small teams.

2. Not Preparing Your Codebase for
Frequent Releases
Another problem I’ve witnessed, even in projects
using the latest technology, involves the codebase.
All too often there are a few key files in a code-
base that need to be worked on for many, many
changes. These can cause significant merge prob-
lems, which can result in time being lost on a daily
basis. Refactoring is key to moving forward at this
stage. Cries of “I can’t make this change because
it will affect x,y,z,” and “It will take several weeks/
months...” are strong indicators that a codebase

may have problems that can be solved by refac-
toring. Stakeholders must be involved when the
product or feature needs to be refactored. The
change involved can take time and isn’t without
risk, although this risk can be reduced by having
unit tests.

If you’re doing manual tests executed on a build that would never have passed unit
tests, you’re just wasting valuable time and resources.

Eight Mistakes that Prevent DevOps Success
By Jonathan Thorpe

www.techwell.com

DevOps eGuide

Page 5 of 14

3. Not Having Extensive Unit Tests
I’ve been astounded by how many times I’ve
witnessed teams doing continuous integration (CI)
without having unit tests. A CI build only proves
that the codebase still compiles. If you don’t do unit
tests, your automated system tests aren’t proving
anything. And if you’re doing manual tests execut-
ed on a build that would never have passed unit
tests, you’re just wasting valuable time and resourc-
es.

4. Not Designing Automated Tests to Scale
A common problem encountered when writing
automated tests is that before long, test suites take
too long to execute. Even seasoned veterans mis-
takenly create test cases that are dependent on the
outcome of other tests. Tests with dependencies on
the outcome of other tests do not scale. Soon, test
suites that used to run in minutes will take hours to
execute, and as the test coverage goes up, so does
the cycle time.

Fortunately, many test cases can be written so that
they’re not dependent on state from previous tests.
While this isn’t always possible, tests shouldn’t have
any interdependencies. When done with virtual-
ization, many tests can be executed in parallel by
spinning up multiple environments and executing
tests across machines in each environment. This can

result in massive time savings and help scale your
DevOps solution.

5. Not Managing Your Capacity
Virtualization, including use of the public cloud, can
provide enough capacity to service the needs of the
development teams, but a common complaint from
R&D and QA is that there is never enough capacity.
Virtual machines (VMs) are so easy to create that
they are built without a second thought. Unfortu-
nately, VMs are frequently not destroyed after use,
which quickly eats up capacity and leads to per-
formance problems. Make sure you clean up after
yourself. Use automation that allows for VMs to be
either destroyed or restored to a clean snapshot
and shut down when the VM is no longer in use. A
common use case might mean that if QA tests are
successful, a VM can be destroyed or reverted back
to a clean snapshot and shut down. If the QA tests
fail, VMs can be left running or snapshot until there
is time for investigation before being destroyed or
cleaned up.

6. Not Using Your Resources Effectively
Spinning up a VM automatically is useful, but what’s
even more useful is configuring each VM appropri-
ately and putting the latest release onto the system.
Use deployment automation tools like Puppet and
Chef to ensure that the base VM is appropriately
configured. Then use application deployment au-

tomation to ensure the latest release is installed on
the newly created environment.

7. Not Using One Set of Deployment Processes
for All Environments
How can the software your team is building be
reliably deployed to all environments? Custom de-
ployment scripts for each environment won’t help
out with the situation. You should execute the same
deployment process over and over again so that
by the time the product ends up in production the
deployment process will be executed many times.

Make sure you clean up after yourself. Use automation that
allows for VMs to be either destroyed or restored to a clean

snapshot and shut down when the VM is no longer in use.

www.techwell.com

DevOps eGuide

Page 6 of 14

Model-driven deployment is key to this. The appli-
cation model should be aware of the environment it
is being deployed to. This way, the appropriate val-
ues are inserted into the deployment configuration
for the environment being deployed to. The end
result is that by the time an application is deployed
to production, the application deployment model
has been tested many, many times.

8. Not Knowing What, Where, When, Who,
and How
A CI system such as Jenkins could be used to
perform a build, spin up environments, deploy
software, and execute tests for each environment.

However, a CI system is primarily meant for small-
scale builds and deployments.

The problem with enabling this level of automation
and self-service is that we are left with many unan-
swered questions: How do we know what build is

deployed to where? What’s in the build? What were
the test results? There are many other questions

that could be raised, mostly related to what can be
done with all of the data produced by a large num-
ber of builds, deployments, and tests, all potentially
being executed in different tools.
Having a higher-level business process model
allows for this information to be tracked much more

easily to drive future decision making. By adding
business process orchestration and having the
higher level process execute the CI build, you can
start a deployment, run tests, and easily gather and
process information about how each build in pro-
duction made its way to production. Audits become
much simpler, and people working in development,
QA, and operations will all have a common set of
data. From this common set of data, staff at all lev-
els can see what is in a release and how the chang-
es in the release have been managed throughout
the entire process.

Automation is the key to a successful DevOps
initiative. It reduces cycle time and moves products
to customers faster. But without a good process
management and reporting framework, the amount
of releases that can be pushed through a system
can quickly get out of control. Providing a layer of
orchestration that can report on data throughout
the entire lifecycle of a release makes it easy to pro-
vide metrics that show how your DevOps initiative
is having a positive impact on business goals.

Automation is the key to a successful DevOps initiative.

www.techwell.com

DevOps eGuide

Page 7 of 14

How Agile Teams Use DevOps for Deployment
Steve Berczuk

Working code is the primary artifact of interest that
an agile team creates. However, a successful prod-
uct delivery means more than building code that
can pass developer tests. Remember, code only de-
livers value once it is deployed. Because developer
testing is a prerequisite for successful deployment,
it seems that testing deployment environments
should be a reasonable thing to do.

Agile practices add value by helping teams detect
problems early and avoid repeating them; these
practices also help teams get feedback early and
often. If you limit your testing to unit and integra-
tion tests, you are effectively passing tested code
“over the wall” to an operations team to deploy—
and this can hide problems. So, the entire team is
responsible for deployment.

To extend the feedback loop into deployment,
teams are taking a DevOps approach by including
the needs of operations teams in the process early.
Delivering a simple application to a production
environment makes it possible to detect issues early
and avoids situations where code relies on mecha-
nisms that won’t work in production. While DevOps
has challenges, addressing deployment issues early
is very valuable.

Extending DevOps to use continuous delivery
means that there are opportunities to exercise the
deployment mechanism to quickly detect prob-

lems, both with the code and with the deployment
process. DevOps helps avoid waste by finding
problems early.

DevOps and continuous delivery help deliver value
predictably. The only thing missing is a regular
process that validates the deployment environment.
Integration and acceptance tests validate that the
application works as deployed, but they may not
verify that the environment is correct. Though there
are a number of frameworks that support developer
and integration testing, there aren’t many well-de-
fined ways to validate an environment.

Using a tool like Puppet or Chef can help ensure
consistency and provide hooks for some valida-
tions. These tools are useful for creating known
environments, but they don’t necessarily tell us if
the environment supports the contract we expect.
For example, a correctly configured machine could
be placed in an environment where an external de-
pendency like a firewall setting has been changed.
It’s possible to develop tests for all of these things
using your own tools, but testing at the DevOps
level seems to be missing.

Recently, I had a chance to look at a tool that ad-

dresses many of these issues. ScriptRock provides a
framework for testing configurations. With a library
of existing, configurable tests that you can extend,
this seems like a promising tool to identify prob-
lems in your deployment environment before they
manifest themselves in your application.

Tools like ScriptRock and practices like automated
environment testing after configuration changes are
great examples of incremental improvements that
are central to agile practices. As we test code in the
small before committing it to a source code repos-
itory, we are pushing automated testing outward
and now thinking about how to validate our deploy-
ment environments. Not everything will be amena-
ble to automated testing, but automated tests will
help us know where to focus our development time
effectively.

Much like testing
and software con-
figuration manage-
ment go together,
combining testing
and environment
configuration tools
can help you real-
ize agile CM’s real
value: understand-
ing the impact of a
change.

DevOps helps avoid waste by
finding problems early.

www.techwell.com

DevOps eGuide

Page 8 of 14

Harnessing the Power of Collaboration
for a DevOps-Driven Organization
By Cass Bishop

 I love tech tools. During my career, I have worked
for and consulted with many companies, and every
time I begin a project, I immediately look for tools
or frameworks to help me complete things faster.
For a guy obsessed with new tech tools, now is a
great time to be in IT. Git, JIRA, Jenkins, Seleni-
um, Puppet, Chef, Bladelogic, uDeploy, Docker,
and Wily (just to name a few) are providing IT with
a big-box hardware store full of tools designed
to help solve technical problems. These tools are
variously pitched, sold, praised, and cursed during
DevOps initiatives—primarily because they are
good enough for most needs but still leave some
critical gaps.

With such an availability of tools, you can check
off a lot of the items listed in one of those “X
Things You Need for DevOps” blog posts that are
published almost daily. Continuous integration .
. . check. Automated testing . . . check. Continu-
ous delivery . . . check. Automated configuration
management . . . check. Application monitoring . . .
check. So, now could you say “DevOps . . . check”?
I would argue you will never be able to check that
box with the above list of tools because, unless
your IT department fits in one room and goes for

beers together every Thursday, you are missing the
most important concept of DevOps: the need for
continuous collaboration about your applications in
all of their states, from development to retirement.

Most organizations I have worked with aren’t even
close to achieving this level of collaboration across
development and operations. They are often dis-
persed across the globe working in different chains
of command with different goals, and despite
investments in SharePoint sites and using email,
instant messaging, and endless conference calls,
information is not effectively shared to those who
need it. How does a developer in Singapore collab-
orate more effectively with an operations team in
Atlanta? Why can’t the incredible number of tools in
our arsenal be enough to fix this?

You might say, “We’ll give the operations team
accounts in JIRA, Jenkins, and Selenium, then give
the developer access to Puppet, Wily, Splunk, and
the production VMs. They can send each other links
and paths to information in each of the different

...you are missing the most important
concept of DevOps: the need for

continuous collaboration about your
applications in all of their states, from

development to retirement.

www.techwell.com

DevOps eGuide

Page 9 of 14

tools and they can collaborate through email, IM,
conference calls, and a wiki or SharePoint site.”
That sounds OK—until you realize that each of the
email threads or chats filled with useful information
gets buried in employee Outlook folders or chat
logs. When was the last time you heard someone
ask to attend yet another conference call or use yet
another SharePoint site?

A likely response might be, “We should have them
save the chat logs and email threads in the Opera-
tions wiki, the Development Confluence site, or that
new SharePoint site.” With those kinds of approach-
es, you might be able to find the threads based on
string-based searches after a lot of hunting through
off-target responses, but more importantly, anyone
reading them has no context about how all of the
data points in the discussion relate to actual appli-
cations, servers, or any other IT asset.

In addition to the lack of context, your IT person-
nel will spend their days hunting for a needle in an
ever-growing haystack of data generated by those
amazing tools. Some estimates indicate that as
much as 38 percent of knowledge worker time is
spent hunting for information to make a decision.
[1] Often we give up and make our best guesses
based on the information we have at hand. A lot of
the time that approach works out fine, but in those
cases where it doesn’t, it can mean the difference
between a smoothly executed project or one that
fails and impacts the business.

What if, when your middleware administrator needs
to discuss a problem with the UAT messaging
engine, she could do so in context with the other

experts in your organization? What if her conversa-
tion were automatically saved and directly related
to the messaging engine, and if the conversation
leads to fixing an issue, the lesson learned can be

turned into a knowledge entry specific to messag-
ing engines? Now any IT employee can quickly find
this knowledge and see who contributed to it the
next time there is a messaging engine issue.

And here’s another practical example. What if, when
developers want to collaborate with system admin-
istrators about higher memory requirements for
their applications due to new features, they can pull
them into a discussion in each feature’s individual
activity stream? The admins could be alerted that
they have been added to the conversation by their
mobile devices and then contribute to the activity
stream and even add other participants, such as
the operations manager, so he can weigh in on

the need for devoting more memory to the correct
VMs. This can all be done no matter where the
team members are and what they are doing.

That’s my vision for what DevOps needs to close
the tool chain gap. No one can drop in a DevOps
culture for your organization—data federation, vi-
sualization, and contextual collaboration are critical
to enable that cultural change. Since time immemo-
rial, tools have driven changes in culture. Culture
doesn’t change on its own or through sheer will of
managers. You have to give your teams the tools
they need to improve their collaboration. Automa-
tion tools and the other types of tools described at
the start of this article are important to DevOps, but
don’t forget the importance of collaboration tools—
and don’t assume the general-purpose collabora-
tion tools you are using today will cut it, because
they won’t.

1. McDermott, Michael. “Knowledge Workers: You can gauge
their effectiveness.” Leadership Excellence, Vol. 22.10. October
2005, ABI/ Inform Global, p. 15.

...don’t assume the
general-purpose

collaboration tools you
are using today will cut it,

because they won’t.

www.techwell.com

DevOps eGuide

Page 10 of 14

Need Another Reason to Consider DevOps?
By Jacob Orshalick

Automation is a critical component of eliminating
waste. A large part of the DevOps movement is
centered on automating the infrastructure tasks
that take away from delivering value. In addition to
the obvious cost savings of automation, DevOps
can also breed innovation.

With the advent of mobile technology, many prod-
ucts now focus on reducing the time we spend on
unnecessary tasks or thought processes. Studies
have even shown that the mind adapts to techno-
logical resources by only storing how to retrieve
information it knows can be immediately accessed
elsewhere, such as through a Google search.

A great example is the recent Stick-N-Find prod-
uct that provides the ability to tag our belongings
so that we will never lose them again. A simple
Bluetooth sticker and a smartphone app allow you
to track down those keys the kids hid in the closet.
While I applaud the effort, I find myself losing my
smartphone more than my keys.

Freeing the mind of unnecessary daily tasks or
thought processes allows more time for creativity
and ingenuity. Human history shows this with the
age of continued automation leading us to the
information age of today. The less time consumed
with daily tasks, like washing clothes or ploughing
fields, the more time we can spend focused on
higher-level thought processes.

Organizations that have focused on DevOps
are some of the most innovative in the industry.
Facebook, Flickr, Amazon, Etsy, and many more
have taken automation to the extreme and have
excelled in developing innovative products that are
leading the market.

I realize that the elimination of waste may not have
convinced you to automate that release process
that only takes an hour, but just realize that the
list of deployment steps your developers have to
keep memorized may be hindering their ability to
innovate.

If you are looking to get more creativity out of your
team, take a look at DevOps. It will not only make
your organization leaner but it may spark the inno-
vation you seek.

Studies have even shown that
the mind adapts to technological
resources by only storing how to

retrieve information it knows can be
immediately accessed elsewhere, such

as through a Google search.

DevOps

www.techwell.com

DevOps eGuide

Page 11 of 14

Don’t Forget Operations’ Point of View
in DevOps
By Bob Aiello

Operations professionals are responsible for en-
suring that IT services are available without inter-
ruption or even degradation in services. IT opera-
tions is a tough job and I have worked with many
technology professionals who were truly gifted in
IT operations with all of its functions and compe-
tencies. Many IT operations staff perform essential,
albeit repetitive, day-to-day operations tasks that
are essential to keep critical systems online and
operational. In some organizations, mainframe
operators are not as highly skilled as their develop-
ment counterparts. When developers observe that
operations technicians are not highly skilled, they
often stop providing technical information because
the developers conclude that the operations tech-
nicians can’t understand the technical details. This
dynamic can result in disastrous consequences for
the company.

I have also worked with top-notch Unix/Linux gurus
in operations who focused on keeping complex
systems up and running on a continuous basis. IT
operations professionals often embrace the IT Ser-
vice Management Forum (itSMF) ITIL v3 framework
to ensure they are implementing industry best prac-
tices for reliable IT services. If you are not already
aware of ITIL v3, you probably should be.

The ITIL v3 framework describes a robust set of in-
dustry best practices designed to ensure the contin-
uous operation of IT services. The ISACA Cobit and
the SEI CMMI are also frameworks that are used by
many organizations to improve their process along
with both quality and productivity. CM profession-
als should particularly focus on the guidance in the
transition section of the ITIL pocket guide, which
describes change, build and release, and configura-
tion management systems (including the configura-
tion management database). With all of this guid-
ance, do not forget to begin with an understanding
of the application and systems architecture.

The first thing that I always require is a clear
description of the application and systems ar-
chitecture. This information is not just for my
entertainment. For build and release engineers,
understanding the architecture is fundamental
because all of my build, release, and deployment
scripts must be created with an understanding of
the architecture involved. In fact, development
needs to build applications that are designed for IT
operations.

Many developers perform test-driven development
(TDD) where code is designed and written to be

testable, often beginning with writing the unit test
classes even before the application code itself is
written. I have run several large-scale automated
testing projects in my career, and I have always
tried to work with the developers to design the sys-
tems to be more easily testable. In some cases this
actually included hooks to ensure that the test tools
could work without finding too many cosmetic su-

www.techwell.com

DevOps eGuide

Page 12 of 14

perficial issues, which we usually call false positives.
Test-driven development is very effective, and it is
my view that applications also need to be designed
and written with operations in mind. One reason to
design applications with IT operations in mind is to
implement IT process automation.

Effective IT operations teams rely upon tools, in-
cluding the automated collection of events, alerts,
and incident management. When an alert is raised
or an incident is reported to the IT service desk,
the IT operations team must be able to rely upon
IT process automation to facilitate the detection
and resolution of the incident. IT process automa-
tion must include automated workflows to enable
each member of the team to respond in a clear and
consistent way. In practice, it is very common for
organizations to have one or two essential subject
matter experts who are able to troubleshoot almost
any production issue. The problem is that these
folks don’t always work twenty-four hours a day,
seven days a week. IT process automation, includ-
ing workflow automation, enables the operations
team to have well-documented and repeatable
processes so that IT services are reliable. Getting
these procedures right must always start with the
application build.

Effective build automation often includes key
procedures such as embedding immutable version
IDs into configuration items to facilitate the config-
uration audit. For example, a C#/.net application
should have a version identifier embedded into the

assembly. You can embed version IDs via an MS-
Build script or using Visual Studio and ClickOnce.
The Microsoft MSIL Disassembler (Ildasm.exe) can
be used to look inside of a .net assembly and dis-
play the version ID. You can use similar techniques
in Java/C/C++ along with almost every other soft-
ware development technology. IT operations staff
need these techniques to be able to confirm that
the correct binary configuration items are in place
and that there have not been any unauthorized
changes. Builds are important, but continuously
deploying code very early in the development
lifecycle is also a critical DevOps function that helps

IT operations be more
effective.

Additionally, appli-
cation automation is
a key competency in
any effective DevOps
environment. Continu-
ous delivery enables the
IT operations team to
rehearse and streamline
the entire deployment
process. If this is done
right, then the opera-
tions team can support
many deployments
while still maintaining
a high level of service
and support. The best
practice is to move
the application build,
package, and deploy-
ment process upstream
and begin supporting

development test environments. These automated
procedures are not trivial and it will take some time
to get them right. The sooner in the lifecycle you
begin this effort, the sooner your procedures will be
mature and reliable.

Having effective IT operations is key to any DevOps
transformation within an organization. It is all too
common for development to miss the importance
of partnering with operations to develop proce-
dures that guarantee uninterrupted IT services. If
you want to excel, you must include the “ops” in
your DevOps endeavors.

Having effective IT operations is key to any
DevOps transformation within an organization.

www.techwell.com

DevOps eGuide

Page 13 of 14

On Frequent Releases:
“I think that there’s a distinction to be drawn be-
tween fear and respect. Releasing a new version
of the site or the app is rapidly becoming a rou-
tine process, and it’s hard to fear something that’s
routine.”

– Simon Stewart

On Agile’s Relationship to DevOps:
“Early on, some of us were worried that “the proj-
ect managers have taken over the agile movement”
and we’d lost all this interesting thinking like from
Extreme Programming. And I mean not lost it in
individual situations, but lost it as a whole. I see that
DevOps has brought a resurgence in the realiza-
tion that if I’ve got these practices that significantly
flatten the cost of change curve, then I can work in
totally different ways.”

– Jeff Nielsen

On Continuous Delivery:
“If you had a hiccup because of some configura-
tion issue, then you lost [business]. So continuous
delivery becomes really important when you have
mobile apps as your main product and you rely on
it being high quality and on time.”

– Prathap Dendi

On Continuous Integration:
“Continuously integrated builds, particularly at
scale, work best when the results of the system
have high visibility in your organization. This visibili-
ty creates a terrific rallying point.”

– Jesse Dowdle

On DevOps Failures:
“The unfortunate thing is that quite often, par-
ticularly when you’re in a large-scale enterprise
with legacy systems and legacy apps, the need to
automate feels like the right move, but it can actu-
ally really, really hamper your efforts to introduce a
DevOps style culture to your organization.”

– Mike Baukes

More on Continuous Delivery:
“We have a lot further to go until we have that
same kind of mentality that physical goods manu-
facturers have had for many years, and have had to
have for many years. But I think we’re getting better

at it, and the agile processes have helped a lot, and
really focusing on this notion, especially with contin-
uous delivery, we have to always be ready to ship
our software. If we’re not ready to ship our software
today, everyday, then a red light should go off and
a horn should sound.”

– Anders Wallgren

On the Role of QA in DevOps:
“In DevOps, we are seeing assurance teams elevat-
ing to play release automation in conjunction with
continuous integration, thereby leading to continu-
ous delivery. This is a classic example of assurance
teams bringing in innovative tools and processes to
engineer quality outcomes.”

– Prasad Mk

The Buzz on DevOps
Insight from Around the Industry

“I see that DevOps has brought
a resurgence in the realization
that if I’ve got these practices

that significantly flatten the cost
of change curve, then I can work

in totally different ways.”

“If we’re not ready to ship our
software today, everyday, then
a red light should go off and a

horn should sound.”

www.techwell.com

DevOps eGuide

Page 14 of 14

Additional DevOps Resources
More Information for Software Professionals

www.techwell.com
http://www.agileconnection.com/?utm_source=AC_eguide_blurb&utm_medium=DevOps_eGuide&utm_campaign=Marketing-join
http://www.stickyminds.com/?utm_source=SM_eguide_blurb&utm_medium=DevOps_eGuide&utm_campaign=Marketing-join
http://www.cmcrossroads.com?utm_source=CM_eguide_blurb&utm_medium=DevOps_eGuide&utm_campaign=Marketing-join
https://well.tc/DevOpsEasteGuide

	Button 41:
	Page 1: Off
	Page 21: Off
	Page 32: Off
	Page 43: Off
	Page 54: Off
	Page 65: Off
	Page 76: Off
	Page 87: Off
	Page 98: Off
	Page 109: Off
	Page 1110: Off
	Page 1211: Off
	Page 1312: Off
	Page 1413: Off

	Button 42:
	Page 1: Off
	Page 21: Off
	Page 32: Off
	Page 43: Off
	Page 54: Off
	Page 65: Off
	Page 76: Off
	Page 87: Off
	Page 98: Off
	Page 109: Off
	Page 1110: Off
	Page 1211: Off
	Page 1312: Off
	Page 1413: Off

	Button 43:
	Page 1: Off
	Page 21: Off
	Page 32: Off
	Page 43: Off
	Page 54: Off
	Page 65: Off
	Page 76: Off
	Page 87: Off
	Page 98: Off
	Page 109: Off
	Page 1110: Off
	Page 1211: Off
	Page 1312: Off
	Page 1413: Off

	Button 44:
	Page 1: Off
	Page 21: Off
	Page 32: Off
	Page 43: Off
	Page 54: Off
	Page 65: Off
	Page 76: Off
	Page 87: Off
	Page 98: Off
	Page 109: Off
	Page 1110: Off
	Page 1211: Off
	Page 1312: Off
	Page 1413: Off

	Button 47:
	Page 1: Off
	Page 21: Off
	Page 32: Off
	Page 43: Off
	Page 54: Off
	Page 65: Off
	Page 76: Off
	Page 87: Off
	Page 98: Off
	Page 109: Off
	Page 1110: Off
	Page 1211: Off
	Page 1312: Off
	Page 1413: Off

	Button 48:
	Page 1: Off
	Page 21: Off
	Page 32: Off
	Page 43: Off
	Page 54: Off
	Page 65: Off
	Page 76: Off
	Page 87: Off
	Page 98: Off
	Page 109: Off
	Page 1110: Off
	Page 1211: Off
	Page 1312: Off
	Page 1413: Off

	Button 45:
	Page 1: Off
	Page 21: Off
	Page 32: Off
	Page 43: Off
	Page 54: Off
	Page 65: Off
	Page 76: Off
	Page 87: Off
	Page 98: Off
	Page 109: Off
	Page 1110: Off
	Page 1211: Off
	Page 1312: Off
	Page 1413: Off

	Button 46:
	Page 1: Off
	Page 21: Off
	Page 32: Off
	Page 43: Off
	Page 54: Off
	Page 65: Off
	Page 76: Off
	Page 87: Off
	Page 98: Off
	Page 109: Off
	Page 1110: Off
	Page 1211: Off
	Page 1312: Off
	Page 1413: Off

	Techwell 15:
	Page 1: Off
	Page 21: Off
	Page 32: Off
	Page 43: Off
	Page 54: Off
	Page 65: Off
	Page 76: Off
	Page 87: Off
	Page 98: Off
	Page 109: Off
	Page 1110: Off
	Page 1211: Off
	Page 1312: Off
	Page 1413: Off

	content1:
	Button 18:
	contents3:
	contents4:
	contents6:
	contents8:
	contents5:
	contents7:
	Button 32:
	Button 33:
	Button 31:
	Button 40:

