
AI	LOG	INTERROGATION	FOR	
AUTONOMOUS	TEST	GENERATION	
BY	KEVIN	SURACE,	APPVANCE	
	

Key	statement:	An	AI	analysis	of	log	file	data	can	be	used	to	re-create	the	UX	actions	from	production	users	

	

Test	automation	today	is	difficult,	time-consuming,	and	error-prone.	It’s	difficult	because	it	requires	
a	highly	skilled	automation	engineer	to	write,	edit	and	maintain	scripts.	It’s	time-	consuming	
because	making	sure	those	scripts	work,	and	maintaining	those	scripts	as	the	application	changes,	
typically	takes	about	a	man-hour	per	script.		

Additionally,	application	complexity	continues	to	grow	at	a	faster	rate	than	test	teams	and	tools	can	
keep	up	with.	Client/server	computing	has	paved	the	way	for	service-oriented	architecture	and	
web	services,	which	in	turn	have	paved	the	way	for	web	applications	and	N-tier	computing,	which	
are	in	the	process	of	paving	the	way	for	microservices.			

Further,	each	of	these	application	architectures	is	a	synthesis	of	everything	that	came	before.	Few	
applications	adhere	to	a	rigid	architecture,	preferring	to	reuse	code	and,	in	some	cases,	entire	
systems	from	previous	applications.	

Then	there's	the	broader	question	of	whether	the	automation	scripts	accurately	reflect	what	users	
do	in	the	application.	While	testers	may	draw	on	user	personas	and	define	a	prospective	workflow,	
both	are	educated	guesses	about	the	user's	nature	and	the	path	through	the	application's	goals	and	
activities.	Real	users	will	not	interact	with	an	application	in	the	manner	in	which	test	scripts	are	
written.		 	



To	be	effective,	automated	testing	must	accurately	represent	how	real	users	interact	
with	the	application.		

Today,	test	scripts	are	typically	recorded	or	written	by	testers	as	they	navigate	through	the	
application's	multiple	steps.	Often,	these	steps	are	intended	to	test	specific	pages	and	functions	
rather	than	to	replicate	a	user	workflow.	That	is	a	good	start,	but	errors	frequently	manifest	
themselves	only	when	tasks	are	performed	in	a	specific	order.	

Newer	development	methodologies	are	also	exposing	the	limitations	of	test	automation.	Both	agile	
methodologies	and	the	newer	DevOps	trends	demand	fast	and	high-quality	automation	to	keep	up	
with	an	ever-increasing	pace	of	rapid	development	and	continuous	deployment.	The	technical	
difficulty	of	automation	today,	coupled	with	the	need	to	constantly	modify	test	scripts	to	keep	up	
with	the	software,	prevents	testing	from	being	as	responsive,	fast	and	thorough	as	it	needs	to	be.		

As	a	result,	automation,	despite	its	potential	for	improving	quality	and	speeding	up	test	execution,	
frequently	falls	short	of	that	potential	due	to	limitations	inherent	in	existing	automation	tools	and	
techniques,	the	majority	of	which	are	based	on	30-year-old	methodologies.	Many	organizations	that	
attempt	test	automation	frequently	abandon	it	or	relegate	it	to	a	minor	role	after	discovering	that	it	
is	not	a	silver	bullet.	Those	who	are	successful	with	test	automation	invest	a	significant	amount	of	
human	capital	in	it.		

To	be	effective,	automated	testing	must	accurately	model	how	real	users	interact	with	the	
application,	as	well	as	the	capability	to	rapidly	generate	test	cases	based	on	those	steps.	
Additionally,	these	test	cases	must	be	easily	maintainable	and	adaptable	to	changes	in	the	
application.	Representing	actual	use	improves	software	quality	by	focusing	on	the	workflows	that	
matter.	



	

Enter	AI	and	Machine	Learning		

Which	test	suite	is	optimal	for	a	new	build?	That	is,	in	an	ideal	world?	With	an	infinite	supply	of	time,	
money,	and	people?	It	would	involve	logically	applying	user	flows	from	production	to	the	new	build,	
along	with	any	new	feature	user	flows	and	validations,	and	observing	the	result.	If	we	could	accomplish	
this,	we	could	create	the	ideal	regression	test	for	each	new	build.	Observing	results	through	the	eyes	of	
real	users	in	a	previous	release.	

The	standard	W3C	log	format	(and	related	IIS,	NCSA,	Splunk,	Sumologic	and	others)	provides	insights	
(most	for	security)	to	server	activity	in	production.	Log	files	may	span	days	or	weeks	and	be	larger	than	
50GB.	

	
W3C	format	example	(from	flylib.com)	
	
The	following	fields	are	recorded	by	the	log	file:	

Field	 Description	
Remote	hostname	or	IP	address	 The	IP	address	of	the	remote	user,	or	the	hostname	if	DNS	is	available	to	resolve	the	name	
User	name	 The	remote	login	name	of	the	user	
Authenticated	name	 The	username	used	to	authenticate	on	the	server,	as	with	password-protected	pages	
Date	 The	date,	time,	and	GMT	offset	of	the	request	
Request	 The	method,	URI	stem,	and	protocol	used	for	the	query	
HTTP	status	code	 Records	the	protocol	status	message	(such	as	404,	for	HTTP	not	found)	
Bytes	transferred	 The	bytes	transferred	between	the	client	and	the	server	
	
	

The	production	logs,	as	shown	above,	provide	solid	(and	enormous)	data	showing	requests	made	of	the	
server.	This	alone	is	not	enough	to	create	much	of	anything	(from	a	test	perspective)	since	we	have	no	
binary	information	nor	any	context	such	as	page	or	page	state	or	even	how	this	request	was	initiated.	

Some	background	on	server	requests	of	note	which	is	that	a	user	action,	on	average,	will	make	200	
requests	of	the	server	to	fill	the	next	page	or	screen.	There	are	exceptions,	such	as	same	page	



applications,	where	requests	may	be	limited	to	AJAX	or	single	requests	for	data.	But	even	in	single	page	
applications	data	is	requested	from	the	server	upon	user	actions	in	most	or	all	cases.	

So	how	can	we	get	context?	We	could	first	create	an	application	blueprint	(formerly	called	a	Master	Key	
File)	that	would	hold	the	“keys”	to	every	single	possible	user	action	on	every	possible	page	state,	and	
their	resulting	server	requests.	This	would	be	a	very	smart	AI	system	of	robots	which	can	navigate	an	
application	logically,	completing	fields	and	marching	forward,	capturing	every	action	and	page	and	state	
and	server	requests.	

For	example,	let’s	assume	a	simple	submit	button.	By	submitting	a	form	with	specific	data,	that	data	will	
be	sent	to	the	server	and	a	variety	of	requests	will	be	made	of	the	server	to	deliver	certain	new	elements	
and	results	based	on	that	data.	Here	we	see	200	requests	made	when	that	submit	button	is	selected	by	a	
user:	

	

This	example	is	a	great	way	visually	to	understand	what	200	unique	requests	looks	like	compared	to	
that	one	user	action.	That	set	of	requests	turns	out	to	be	quite	unique	from	other	actions	on	this	page.	
And	we	can	use	this	fact	to	help	us	determine	what	UX	flows	a	user	has	taken.		

By	recording	every	possible	UX	action	in	the	AI	driven	blueprint,	we	group	these	requests	into	groups	
associated	with	unique	specific	actions	on	page	states.	

Later,	we	can	begin	interrogating	the	log	files	using	an	AI	computational	technique	called	predator	prey.	
The	goal	here	is	that	a	log	file	has	almost	unlimited	possibilities	of	gets	puts	posts	and	other	requests	
recorded	from	users’	production	interactions.	It’s	not	atypical	for	a	log	file	to	be	50GB	or	more,	
representing	10’s	of	thousands	of	user	flows	and	perhaps	millions	of	server	requests.	As	a	result,	the	
problem	of	locating	a	similar	grouping	that	corresponds	to	the	groups	visible	in	the	new	build-related	
blueprint	file	appears	to	be	infinite.	Thus,	a	technique	that	is	constantly	looking	for	the	top	three	
candidates	for	a	match	and	rapidly	discarding	the	poor	matches	is	extremely	useful.	Once	we	have	found	
the	best	match	(there	may	be	no	perfect	match	since	the	production	build	is	slightly	different	than	the	



new	build),	the	API	group	is	matched	to	a	UX	action	in	the	new	build.	This	is	fed	to	a	code	generator	to	
generate	JavaScript	which	will	execute	a	UX	action	which	corresponds	to	the	closest	match	API	group	for	
that	page	state.	Typically,	we	can	create	5,000	scripts	mimicking	production	user	flows	in	about	10	
minutes.	And	a	QA	engineer	may	decide	to	set	various	limits	on	this	such	as	1,000	scripts	or	even	
100,000	scripts.		

	

The	“AI”	here	is	really	the	learning	which	occurred	by	learning	the	application	through	the	AI	blueprint	
process,	finding	similar	groups	in	the	logs,	and	upscaling	those	API	requests	to	corresponding	UX	actions	
in	script	form.	The	learning	from	AI	blueprint	is	also	retained	for	updating	the	baseline,	highlighting	
differences	between	builds	and	so	on.	Thus,	the	machines	learning	is	ongoing	and	forever,	but	targeted	
solely	at	your	application.		

	

The	result	is	most	often	a	bell	curve	of	usage	(that	is	hundreds	or	thousands	of	scripts)	gleaned	from	
production	activity	which	are	then	applied	to	the	new	build.	



In	addition	to	the	scripts,	we	will	want	to	be	able	to	validate	other	outcomes	beyond	working	flows.	This	
is	also	a	learning	process	by	leveraging	these	user	flows	with	relevant	test	data	to	attain	outcomes	from	
these	scripts	against	production.	In	this	case,	the	AI	blueprint	can	be	used	from	a	past	run	(the	
production	build)	to	be	sure	and	generate	the	correct	scripts	for	production	or	simply	use	those	scripts	
from	that	build	already	generated	by	the	system.	Then	outcomes	can	also	be	recorded	and	reused	
against	the	new	build	to	be	certain	that	outcomes	are	validated	as	well	as	flows	working	perfectly.	

This	methodology	is	more	secure	and	accepted	than	adding	trackers	to	applications	which	can	create	
serious	security	concerns	and	disclosure	requirements.	

This	method	has	been	successfully	used	across	hundreds	of	applications,	validating	flows	and	outcomes	
as	well	as	all	API	responses	from	the	server	side.	Without	a	single	script	written	by	a	human.	

As	the	system	learns	from	each	build,	there	is	no	maintenance	of	scripts.	There	is	no	concern	about	
accessors	because	the	system	will	automatically	apply	new	accessors	to	new	scripts	in	each	new	build.	
There	is	no	concern	that	important	user	flows	are	skipped	because	all	important	flows	must	be	present	
in	production	(save	new	features).	And	there	is	no	security	concern	because	nothing	is	added	to	the	
application	to	accomplish	this.	

Many	more	details	on	exactly	how	all	this	works	can	be	found	in	Appvance’s	patent	10,204,035.	

	

SUMMARY:	

By	learning	from	both	the	new	build	and	the	previous	production	release	(using	AI)	and	combining	this	
information	with	standard	log	files,	a	QA	team	can	generate	the	bell	curve	of	user	flows	that	mimic	those	
of	real	production	users	and	apply	those	tests	to	the	new	build	using	an	AI	system	such	as	AppvanceIQ.	
All	of	this	is	accomplished	without	writing	a	single	line	of	code.	Appvance	first	made	this	technology	
available	in	2017.	

About	the	author	

	
	
Kevin	is	CTO	and	Chair	of	Appvance.ai,	a	leader	in	AI	based	autonomous	testing.	He	has	been	awarded	
93	worldwide	patents.	
	
https://en.wikipedia.org/wiki/Kevin_Surace		
Twitter:		https://twitter.com/kevinsurace		
Linkedin:	https://www.linkedin.com/in/ksurace/		



	

About	Appvance	

Appvance.ai	is	the	leader	in	AI-driven	test	generation,	which	is	revolutionizing	how	software	testing	is	
performed.	The	company’s	premier	product	is	Appvance	IQ,	the	world’s	first	AI-driven,	unified	test	
automation	system.	It	helps	enterprises	improve	the	quality,	performance	and	security	of	their	
applications,	while	transforming	the	efficiency	and	output	of	testing	teams.	Appvance.ai	is	
headquartered	in	Santa	Clara,	California,	with	offices	in	Costa	Rica	and	India.		
	
	
Visit	us	at		
https://www.appvance.ai	
https://www.linkedin.com/company/appvance/	
https://twitter.com/appvance	
https://www.facebook.com/AppvanceInc/		
	

	


