
A Strategic Guide
to Salesforce Testing

eBook

Contents

Why Testing
Salesforce
is Important

CHAPTER 1

A Strategic Guide to Salesforce Testing | 3

Testing Salesforce

CHAPTER 1

Why Testing
Salesforce
is Important
Since its launch on February 7, 2000, Salesforce was little more than a
contact database to store customer details, track sales, and send the
occasional email or two.

Fast forward to now, and Salesforce is much more than a simple
customer relationship management (CRM) system. With 20% of the
global CRM market and over 150,000 customers, Salesforce’s dominance
in the world of CRM doesn’t look like it’s letting up anytime soon.

As the number of users grows, so do the possibilities of how enterprises
use Salesforce to run their organizations. By adding new processes,
application integrations, and workflows that require complex business
rules, Salesforce is pivotal for organizations to enable growth to deliver
an exceptional customer experience.

You need a robust Salesforce testing strategy. But despite efforts to
standardize deployments, with thousands of possible integrations, and
business logic to support, no two companies will implement Salesforce
the same way.

Add to this the requirement to upgrade from the original Salesforce
Classic to the modern user interface (UI) of Salesforce Lightning — you
are adding another layer of test complexity.

This eBook highlights best practices to overcome Salesforce testing
challenges to ensure the platform supports your organization so users can
meet business objectives after every update, upgrade, and implementation.

CHAPTER 1

A Strategic Guide to Salesforce Testing | 4

Testing Salesforce

Five Challenges
and the Test
Strategies to Use

CHAPTER 2

A Strategic Guide to Salesforce Testing | 5

Challenges and Strategies

CHAPTER 2

Five Challenges
and the Test
Strategies to Use
Salesforce plays a critical CRM for thousands of organizations; testing
the platform has become crucial. Salesforce must deliver a single source
of truth, so testing functionality changes after every release, application
integrations, and business-critical workflows are vital to keeping your
business advancing.

The following are five key challenges and strategies to consider when
testing your Salesforce Lightning platform.

A Strategic Guide to Salesforce Testing | 6

Challenges and Strategies

Challenge 1

Shadow Document Object Model

As more organizations transition to Salesforce Lightning for improved
functionality, they must prepare for how web components render the UI and its
composition. The challenge is Salesforce’s use of the Shadow Document Object
Model (DOM), which wraps up and protects the internal DOM, which structures
the content of a web page’s content.

Programming languages such as HTML, cascading style sheets (CSS), and
JavaScript cannot access Salesforce’s protected internal DOM or shadow tree
web components. These tools also rely on underlying object identifications (IDs)
in the code to precisely identify the focus of testing.

Further problems arise because these IDs are dynamic, meaning they change
after every new release. Consequently, pre-existing scripts from an object or
DOM tool will break as they search for IDs that no longer exist.

Challenge 2

Salesforce updates

Salesforce’s main releases occur three times a year, along with additional
upgrades and maintenance updates. Your teams have time to prepare for the
three main releases before testing begins. However, some updates release
automatically to your production environment.

Every new release, update, and upgrade introduces new functionality and UI
improvements, resulting in changes to object IDs. These changes dramatically
increase test maintenance. Because some automation tools create scripts that
solely rely on static IDs, these scripts will break.

When organizations upgrade or migrate from Salesforce Classic to Lightning, the
same thing happens. The core functionality of your Salesforce platform remains
the same, but the changes in the code alter object IDs.

Teams will often rush testing, resulting in releasing a version of Salesforce that
does not allow the business to function as expected. Not only do tests fail, but
a lot of work and effort is necessary for your teams to uncover which part of the
DOM has changed.Strategy

The best practice to solve this challenge is to use a testing solution
that combines object-based testing with image-based testing. This
combination of tools validates the user experience while verifying the
object IDs within the DOM. Users can access the metadata when the test
engine interfaces directly with the Salesforce API. An object, such as an
account, contact, or case, and connected inputs, such as a checkbox,
picklist, or text areas are detectible to the test software.

Strategy

Overcoming these challenges depends on test automation tools that do
not rely solely on object ID verification. It is beneficial if the software can
reuse the same test automation assets across Salesforce’s Classic and
Lightning versions, including third-party applications and systems.

A Strategic Guide to Salesforce Testing | 7

Challenges and Strategies

Challenge 3

Validating a complex UI

Compared to Salesforce Classic, Lightning introduces new navigation, layouts,
list views, filters, dashboards, integrations, and workflows. While these
improvements are helpful for users, each feature increases the number of user
journeys to test.

New features, such as iFrames, drop-downs, and pop-up windows, while
offering a better experience, can take time to load on the screen. While loading,
Salesforce Lightning adds an overlay that masks all underlying object identifiers,
causing the same problem associated with Shadow DOM.

This overlay may cause issues for object-based tools because the built-in wait
conditions in the code may cause a test to fail before functionality returns. In
reality, the slowness of Salesforce loading is the problem. The object-based tool
cannot see the onscreen loading panel in the code, meaning you need a solution
capable of validating the UI, as well as verifying the code.

Strategy

Instead, it would be best to have a testing solution that does not rely
solely on objects and can handle various new features and UI functionality
changes from the user’s perspective.

Another way to overcome this challenge is to use a model-based
approach powered by artificial intelligence (AI). This strategy enables
you to use the same script to test different versions of Salesforce across
various browsers, devices, and operating systems.

A Strategic Guide to Salesforce Testing | 8

Challenges and Strategies

Challenge 4

Custom workflows

Salesforce offers more than just simple customer relationship management;
it can create custom user workflows to support business-critical processes.
Businesses can automate internal processes and procedures, helping
organizations increase productivity and improve efficiency.

These custom workflows and business rules typically follow a step-by-step
process. They include intricate rules, such as mandatory fields, business rules,
and if / then statements to ensure they function correctly.

Because Salesforce’s usability is so fluid, you cannot rely on only testing at the
code level; testing must validate the UI as well. If users incorrectly implement
business rules, they may miss some mandatory fields, which critical internal
processes require. For example, what would happen if a business rule was wrong
and a user could not complete a multimillion-dollar deal?

With the sheer number of potential actions, paths, and routes a user can
take, manually testing every permutation takes too long. Manual testing can
also introduce human error when identifying bottlenecks or gaps preventing
workflows from supporting business logic.

Strategy

Modern testing solutions generate an accurate map of Salesforce data
flows. This process creates a library of pre-written automation scripts
that save users days of time and effort compared to a manual testing
framework.

To customize tests, users can manipulate the data within a model to
replicate workflows that are specific to their business needs.

Challenge 5

Application integration

To further support business-critical workflows, Salesforce enables the integration
of a range of applications. Salesforce testing is no longer just about testing
Salesforce — it’s about testing the whole ecosystem of applications.

Applications within your continuous integration / continuous delivery (CI / CD)
pipeline, such as GitHub, Jira, and Slack, can integrate and enable development
and operations (DevOps). HubSpot and LinkedIn can link to Salesforce to
support marketing and sales, along with a whole host of other applications.

However, with the introduction of different codebases and dynamic object IDs,
the higher the likelihood of failed tests either when testing manually or using the
wrong tools.

Strategy

Your testing plan needs to handle third-party application integrations
effectively with the various customization options available to your teams.
User journeys may span multiple applications, so make sure to test these
thoroughly.

A comprehensive test automation tool is critical for modern businesses
when testing Salesforce. The most effective solution is software that
interfaces directly with the Salesforce API to auto-generate all test
automation assets by collecting Salesforce metadata.

A Strategic Guide to Salesforce Testing | 9

Challenges and Strategies

Salesforce
Testing Best
Practices

CHAPTER 3

A Strategic Guide to Salesforce Testing | 10

Best Practices

CHAPTER 3

Salesforce Testing
Best Practices
Salesforce is critical to organizations around the world. Departments
including sales, operations, marketing, and finance depend on it
functioning as expected. A vast number of third-party applications can
integrate with it as well.

As a result, numerous user journeys, input fields, and custom workflows
unique only to your business are the foundation of your Salesforce
instance. This complexity means that you must test every action,
integration, and customization across various user interfaces to support
business-as-usual. Here are some best practices for testing Salesforce.

IT and business alignment
for custom workflows

Quality assurance engineers understand how to write scripts. Business
analysts understand which business process needs to integrate with your
Salesforce platform. By bringing both together early, teams can identify
and create custom business-critical workflows to maximize efficiency and
productivity throughout your organization.

A Strategic Guide to Salesforce Testing | 11

Best Practices

Test a variety of user experiences

Create numerous test cases for various roles across your organization, as
your team uses Salesforce across multiple technologies to meet their specific
business requirements.

User experience (UX) testing is also beneficial when using mandatory fields with
specific rules for custom workflows. You can verify these rules in the code, but
to ensure they run correctly and support business logic, you must validate these
fields at the UI level.

And because Salesforce’s UX is highly flexible, exploratory testing is valuable to
cover the multiple paths a user can take along a custom workflow.

Test other applications

Salesforce has grown to become an essential piece of software for hundreds of
thousands of organizations by supporting the integration of multiple applications
and plugins to enable business growth.

End-to-end testing is a vital step in any framework to ensure all integrations,
such as Google Cloud, ServiceNow, and Slack, support business-critical
workflows within your Salesforce platform.

A Strategic Guide to Salesforce Testing | 12

Best Practices

Automate

Numerous upgrades break tests. Complex UI, custom workflows, and multiple
integrations require multiple tests. The Salesforce ecosystem is constantly
expanding, and manual testing cannot keep pace with new applications, user
flows, and the constant demands when scaling your organization.

Trying to test all these updates and new configurations manually will significantly
impact the efficiency of your Salesforce instance. There is a reduction in
productivity, as is your ability to use the platform to support business objectives,
leading to a poor customer experience.

Test automation is the only way to ensure updates and system improvements
happen fast enough for your teams to outperform your competitors.

Test internally-developed applications

Internally-developed applications often support business-critical workflows.
While powerful, Salesforce’s developer experience (DX) requires additional
tools for application development beyond continuous integration tools like
Jenkins. Developers often need third-party DevOps tools for effective release
management. It is critical that your testing plan accounts for workflows.

A Strategic Guide to Salesforce Testing | 13

Best Practices

Salesforce
Testing Checklist

CHAPTER 4

A Strategic Guide to Salesforce Testing | 14

Checklist

CHAPTER 4

Salesforce Testing
Checklist

User interface

UI testing is imperative to validate how the users see and interact with
Salesforce. Custom workflows also introduce mandatory fields that
enable business rules, which you must also validate at the UI level. If
users enter the wrong data or accidentally skip a field, sales teams could
lose deals, inaccurate planning, or fulfillment centers might never receive
an order.

Since many hosted Salesforce instances are in the cloud, UI testing
should extend to browsers — organizations may have a preference about
which browser they use. UI testing in this manner ensures all users have
the same experience across different browsers and devices, such as a
smartphone or laptop.

 It is crucial to include offline capability testing because some users,
particularly salespeople, will need access to customer or prospect
information while in the field.

A Strategic Guide to Salesforce Testing | 15

Checklist

Performance

Testing your Salesforce platform’s performance is necessary to check that it can
withstand the stress of real-life usage.

With numerous users interacting with it across various technologies and integrated
applications, testing ensures Salesforce can perform under many conditions.
Maintaining performance with no lag or downtime is essential to remain productive
even when hundreds or thousands of users access the system simultaneously.

Essentials to test:

• number of users during specific conditions (daily / monthly)

• capacity during operation

• workflow integrations and custom applications

• response time

• speed while loading

A Strategic Guide to Salesforce Testing | 16

Checklist

End-to-end

As Salesforce systems become increasingly complex, end-to-end testing ensures
that businesses maintain operational excellence to support their objectives.
Custom workflows, application integrations, and front-end and back-end
functionality are vital areas to test so you can identify any bottlenecks that may
impact productivity.

As more Salesforce instances move to the cloud, integrations extend to
applications and processes that support customer interactions, such as:

• website

• customer service

• mobile applications

• social media

• email

• live chat and chatbots

• point of sale

• enterprise resource planning (ERP)

Before you begin end-to-end testing, it is essential to confirm that the test
automation solution you use verifies that the codebase is correct. This process
includes testing the UI to ensure it functions as expected, as shown in Figure 1.

A Strategic Guide to Salesforce Testing | 17

Checklist

Figure 1. Example of a Salesforce test model built using Eggplant’s digital automation intelligence (DAI)

A Strategic Guide to Salesforce Testing | 18

Checklist

Functionality

It is critical to combine testing technologies to verify the codebase and validate
the UI to ensure your Salesforce platform performs correctly.

Functionality testing should cover all necessary functions, accessibility
considerations, and custom workflows to ensure seamless operation for users
from all departments.

Sales teams need critical customer information quickly — be it leads, online
forms, or prospect follow-ups — linked together to have a complete view of
all interactions. Marketing requires campaign statistics, email effectiveness,
and social media exchanges all in one place. Customer service requires ticket
prioritization to inform relevant teams of any customer-related issues or queries.

Exploratory

Salesforce’s ability to enable organizations to create business rules to drive
custom workflows increases the need to test every permutation of how users
interact with the underlying code at the UI level.

Users will not necessarily move down that linear path in sequence because a
custom workflow has five clear steps. If the end-user can access one step from
a different route, but the step fails to conform to the business rule, a user may
need to go back and refresh the page to complete an action — however, that
extra step takes time and impacts productivity.

You can prevent this from happening by testing every possible user journey,
custom workflow, and business rule.

Coverage significantly increases by combining exploratory testing with AI auto-
generating test cases, as shown in Figure 2. This process covers all possible user
journeys. Even the best manual tester would struggle to develop all necessary
user journeys to match this intelligent way of increasing test coverage.

A Strategic Guide to Salesforce Testing | 19

Checklist

Figure 2. Test coverage heatmap of full exploratory testing of a Salesforce model using Eggplant DA

A Strategic Guide to Salesforce Testing | 20

Checklist

Eggplant
Testing Strategy

CHAPTER 5

A Strategic Guide to Salesforce Testing | 21

Eggplant Strategy

CHAPTER 5

Eggplant Testing
Strategy
Eggplant Salesforce solution is an AI-assisted test automation solution that
uniquely meets the complex challenges of Salesforce testing.

By having the ability to interact with a range of technologies, custom workflows,
application integrations, Eggplants testing capabilities far exceed other testing
tools that solely rely on verifying the codebase. The following is how Eggplant
software can help you with your Salesforce test needs.

Model-based approach

Auto-generate user journeys that span different devices, browsers, and operating
systems, as well as business rules that support custom workflows. One model is
all you need to test both versions of Salesforce.

No code / low code approach

Easily bridge the gap between IT and the business using a no-code / low-code
approach, enabling anyone to carry out software testing, regardless of technical
ability. People across your organization can take advantage of auto-generated
test flows by simply clicking through a test model to design a user journey.

Test technology at any level

Use intelligent testing that interacts with any text or image on a screen to
validate the UI. When validating the UI, testers can use the same test snippets
across all versions of Salesforce. Eggplant software can also use objects for
scenarios when extracting data from a table, plus it can make back-end API calls
to verify that the updated data is accurate.

AI-assisted automation

Intelligent testing is available via AI-assisted automation to generate essential,
and business-critical user flows throughout Salesforce. The AI engine also
exactly monitors how Salesforce auto-generates future tests based on real
user journeys.

Test from the user’s perspective

Automating processes just as a human would ensure that Salesforce functions as
expected, as shown in Figure 3. Easily conduct and perform usability tests based
on the current business requirements. Do not rely only on verifying the code to
pass a test; validate the UI with Eggplant’s intelligent computer vision and be
sure to return no false positives.

A Strategic Guide to Salesforce Testing | 22

Eggplant Strategy

my.salesforce.com

Salesforce API

Test models

B2B customer community

B2C customer community

Cases

Standard and
custom objects

Service

Accounts Product

Contacts Custom
objects

Marketing

W
O

RKFLO
W

S

O
BJEC

T M
ETA

DATA

Automation assets

Figure 3. Architectural flow for Eggplant’s Salesforce solution

Learn More

Reduce test maintenance, future-proof your Salesforce platform, and maintain business continuity with Eggplant’s Salesforce solution.
To learn more, visit eggplantsoftware.com/salesforce-solution

Download the solution brief

A Strategic Guide to Salesforce Testing | 23

Eggplant Strategy

https://www.eggplantsoftware.com/salesforce-solution
https://info.eggplantsoftware.com/salesforce-solution-brief
https://info.eggplantsoftware.com/salesforce-solution-brief

Information is subject to change without notice. | 7122-1033.EN © Keysight Technologies, 2022 | Published in USA, March 17, 2022 | keysight.com

http://www.keysight.com

	Why Testing Salesforce Lightning is Important
	Five Challenges and the Test Strategies to Us
	Testing Best Practices
	Testing Checklist
	Eggplant
Testing Strategy

	Button 645:
	Button 642:
	Button 643:
	Button 644:
	Button 646:
	Button 651:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:

	Button 648:
	Page 3:
	Page 4:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:

	Button 650:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 21:
	Page 22:
	Page 23:

	Button 649:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:

	Button 647:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:

