
Best Practices for Conducting
Generative AI-Based
Test Automation

eGuide

The best practices for developing and running an efficient and effective test automation program have

been discussed by many in the industry. It’s important to determine your strategy, and then implement

your test automation in a way that supports your DevOps process. It should also support release tim-

ing, provide actionable information for bug resolution and go/no-go release decisions, and meet your

risk tolerance specifications.

However, the best practices for automation may look different when you are bringing to bear the

power of a generative AI platform for creating and executing your automated tests. The purpose of this

guide is to highlight the key areas where Best Practices need to be defined differently and provide you

with suggested Best Practices that support the transformative aspects of using a generative AI-based

testing platform and framework.

Why You Need to Follow Unique Best Practices With a
Generative AI-Based System

In the past, a Test Automation program was designed around parameters like test reusability presump-

tions. Given the effort required to create a test script and then maintain it, a test was only automated

when it would be used enough times to justify this time investment. But generative AI changes the

calculation—with AI writing tests instantly and autonomously, scripts are now disposable, so your pro-

gram no longer has to be limited by the reusability constraint.

Let’s get more specific about what generative AI can do for you today with respect to test automation,

and in particular, the capabilities that Appvance’s AIQ platform provides.

AI can write test scripts
The AIQ platform can generate 2 types of test scripts automatically with its AI models:

•	 Regression Test

These tests are based on anonymized log data capturing the behaviors of actual users. AI then uses

this data to reconstruct the use cases and write corresponding test cases so that your Regression Test

Suite is always up to date, covering the flows of your actual users.

•	 Exploratory Tests

AI can create test scripts covering every possible user flow in an application. Think of these AI-gen-

erated tests as the exploratory testing your team would conduct but on steroids. You can now cover

even the newest code submitted by your dev team and ensure that it is good for release on day one.

These exploratory tests provide complete Application Coverage™, which is only possible to achieve

with the use of these AI-generated tests.

This test creation capability is state of the art, but more types of test creation by AI are sure to be com-

ing soon.

2© 2023 Appvance Inc. All rights reserved

AI can create (synthetic) test data
With the enormous number of test scripts created by AI, and the ubiquity

of continuous testing needs, it’s hard to keep up with creating test data to

satisfy your needs. AI can step in to alleviate this burden with some quick

instruction.

Best Practices For a Generative AI-Based Test
Automation Program

In light of the capabilities of generative AI, we’ve (re)considered the best

practices for creating and executing your test automation program. Here are

the areas we feel you need to look at differently, and we also provide our take

on the new Best Practices requirements in each area.

Test Design / Strategy
As always, your program needs to begin with the design and strategy phase,

where you match your testing strategy and plan to your business goals. The

capabilities of AI impact this phase significantly. So here are our recommen-

dations for your revised Best Practice approach.

Recommended Best Practices

1.	 Rethink Test Scripts:

With AI in the picture, the need to convert every test case into a test

script diminishes. Instead, you can focus on identifying critical test

scenarios and generating test scripts for them. Consider test cases that

require complex decision-making or involve interactions with adjacent

systems, as those most warrant explicit and thorough testing.

2.	 Error Reporting:

AI is capable of detecting a larger number of errors compared to tradition-

al testing approaches. To manage the influx of reported errors, establish

rules for immediate reporting and prioritization of critical issues. Classify

issues based on severity and impact, addressing high-priority concerns

first.

3© 2023 Appvance Inc. All rights reserved

3.	 Evolve Test Case Development:

While AI generates a comprehensive set of tests, it does not eliminate the need for human input

entirely. Savvy QA managers play a crucial role in guiding AI-driven testing. For instance, it is often

valuable to have AIQ focus on creating test cases for unique scenarios, edge cases, and critical func-

tionalities. This helps ensure that its training is comprehensive and effective.

4.	 Enhance AI Training:

Speaking of training, to effectively train AIQ, shift the focus from user flows to documenting business

rules. Clearly define the expected behavior, constraints, and conditions of the application-under-test

(AUT). By providing explicit instructions regarding business rules, you enable AIQ to understand the

desired outcomes and identify potential deviations.

5.	 Regression Testing Frequency:

With AI-powered testing, it becomes feasible to perform full regression tests after every build.

However, the decision to do so should consider factors such as the size and complexity of the AUT,

time constraints, and available resources. It may be more practical to prioritize regression testing for

critical areas of the application.

6.	 Reevaluate Test Coverage:

The old-school metrics of Test Coverage and Code Coverage have been supplanted by Application

Coverage™, which is the new standard of testing completeness. This is because Application Coverage

mimics user experience and can now be comprehensively achieved via generative AI. You can read

more about why comprehensive Application Coverage is not just achievable with a generative AI-

based system like AIQ, but should now be expected, in this recent blog post.

Design for Test
Developers and quality assurance teams must collaborate to succeed in today’s fast-paced software de-

velopment industry. By working together from the beginning, Dev and QA can incorporate best practices

that make test automation easy and efficient, thereby accelerating release cycles and improving quality.

Together, they foster collaboration and enable comprehensive test automation.

Recommended Best Practices

1.	 Collaborate with Dev to create a test-specific environment

 It is essential to establish a dedicated test environment to facilitate test automation. By working

closely with Dev, QA can identify the specific requirements for testing and find workarounds that

meet those needs without impacting the production environment. This ensures that test cases run

smoothly and are not affected by external factors. For instance, the test environment can include

workarounds for multi-factor authorization (MFA), as discussed below.

4© 2023 Appvance Inc. All rights reserved

2.	 Assign element IDs and consider testability

To enhance the reliability of test automation, Dev should assign unique element IDs to every element

in the application. Traditional accessors, such as XPath or CSS selectors, can be dynamic and unreli-

able. Element IDs provide a stable identifier for automation scripts, making them less prone to fail-

ures caused by UI changes. Moreover, during the design phase, Dev should consider what elements

need to be tested, ensuring consistency in domain and data types across the application.

3.	 Organize and label common elements

To maximize efficiency, it’s essential to identify common elements and organize them systematically.

Dev should design the application in a way that allows for easy identification and retrieval of common

elements during test automation. By ordering, labeling, and organizing common elements consistent-

ly, QA can create reusable test procedures that can be shared across the team. This approach stream-

lines the development of test cases and minimizes duplication of effort.

4.	 Leave clues for the test team

Dev can support the test team by leaving breadcrumbs or clues in the application code. By writing

to the log before and after critical steps, the test team can easily verify that the expected events

occurred. This practice assists in debugging and troubleshooting, making it easier for QA to identify

potential issues and ensure the application functions as intended. Collaboration between Dev and QA

in this aspect promotes transparency and accelerates the test automation process.

5.	 Involve the test team in design conversations

One of the key aspects of “Design for Software Test” is involving the test team in design conversations

right from the beginning. By including QA professionals in discussions and decision-making process-

es, their unique perspective and expertise can contribute valuable insights. The test team can provide

feedback on the design, suggest additional requirements, and identify potential challenges for test

automation. This collaboration ensures that the application design incorporates testability, making it

easier to create comprehensive and effective test cases.

The collaboration between Dev and QA teams is crucial for successful test automation. By following the

five best practices listed above, organizations can create a harmonious working environment where both

teams work together to ensure fast release cycles and high quality. By incorporating testability into the

application design, assigning element IDs, organizing common elements, leaving clues for the test team,

and involving QA in design conversations, organizations can streamline the test automation process,

which is essential to the delivery of high-quality software. Embracing these practices encourages collabo-

ration between Dev and QA, ultimately resulting in faster time-to-market, improved product quality, and

enhanced customer satisfaction.

4© 2023 Appvance Inc. All rights reserved

Test Data
The overall best practice for the provision of test data is to design and generate

it, so-called Synthetic Data Generation. This involves generating synthetic data

that encompasses various data combinations and scenarios, an approach that

ensures comprehensive test coverage now that AI has enabled such a wide

array of tests.

AIQ has robust Synthetic Data Generation capabilities, including a vast library

of fictional names, streets, cities, email addresses, colors, sizes, part numbers,

etc. These can be generated in any combination to create representative test

data. Further, AIQ can add regular expressions (also known as Regex) to the

test data to conform to a particular pattern, e.g., product codes or customer

codes, or to create dates in the future (for a delivery date) or dates in the past

(for a birth date).

It is important to have test data that tests all the corner cases (the domain

of each data element) and the valid and invalid combinations (positive and

negative testing). Plus, it must be a stable dataset. AIQ’s test data generation

provides that stable dataset.

Multifactor Authentication (MFA)
Multi-Factor Authentication (MFA) is an essential security measure to protect

applications from unauthorized access. However, MFA poses challenges for

test automation teams who need to strike a balance between comprehensive

automation and MFA-enhanced security. But there are a series of test auto-

mation best practices to use when MFA is in the mix. These support effective

automation with uncompromised security.

Recommended Best Practices

1.	 Understand the purpose of MFA

MFA is designed to defeat brute-force attacks and unauthorized access

attempts. It is crucial to understand the rationale behind MFA when de-

veloping appropriate test automation best practices. Recognize that while

automation is important, the primary objective of MFA is to safeguard the

production application and its users’ data.

2.	 Devise an MFA workaround for testing

Work with the development team to devise a workaround that caters

specifically to the test environment when an application-under-test (AUT)

uses MFA. Here are some techniques:

3© 2023 Appvance Inc. All rights reserved

•	 Use a token that always works

Create a test-specific token that bypasses MFA and can be used exclusively for automation pur-

poses.

•	 Disable MFA altogether in the test environment

Temporarily disable MFA during testing to streamline the automation process. However, be cau-

tious to enable it again for production environments.

•	 Provide an API call for setting credentials

Develop an API endpoint that allows automation scripts to set the required MFA credentials

programmatically.

•	 Store the token in the database

Have the development team store the MFA token in the test database, allowing automation

scripts to retrieve it during tests.

•	 Utilize web SMS services

Integrate a web SMS service to retrieve the MFA token automatically during test automation.

3.	 Ensure that MFA is back in place when the application goes to production.

Conduct manual tests to verify that the MFA workaround implemented for test automation purposes

doesn’t exist in the production build. This ensures the integrity of the MFA process and avoids securi-

ty vulnerabilities.

4.	 Maintain Separate Environments

Maintain a clear separation between the test and production environments. Test environments

should have distinct configurations that facilitate efficient test automation. Ensure that the MFA

workaround implemented for testing purposes DOES NOT carry over to the production environ-

ment, where MFA should function as intended.

Now that you’re armed with these revised Best Practices, you can achieve maximum efficiency and great-

er performance in your test automation program. If you haven’t adopted a generative AI-based system

like AIQ yet, contact us to get a demo and see its power in action.

4© 2023 Appvance Inc. All rights reserved

