
	 	 	
	

	 	 	
	

	

USE	CASE:	EXPEDITING	
PERFORMANCE	TESTING	WITH	AI-
BASED	OBJECT	IDENTIFICATION			
	
by	Kevin	Surace,	Appvance	

	

Key	statement:	Quality	engineering	should	include	functional,	performance	and	security	
quality,	and	thus	testing,	as	a	standard	set	of	tasks	at	each	build.	We	often	think	of	
performance	as	load	testing,	but	in	fact	performance	can	instead	be	real-world	performance	
with	real-world	average	loads.	And	in	a	highly	competitive	space,	an	extra	second	can	mean	
lost	sales	or	worse.	

	

As	native	mobile	apps	have	proliferated	so	has	their	usage	in	ecommerce.	From	searching	
for	products	to	completing	purchases,	“m-commerce”	is	now	over	70%	of	all	e-commerce.	
As	with	all	e-commerce,	speed	of	the	app	and	perceived	responsiveness	is	critical	to	keeping	
a	user	focused	on	the	task	and	getting	to	a	purchase.		How	critical	is	performance	to	
ecommerce?	Here	are	four	stats:	

• The	highest	ecommerce	conversion	rates	occur	on	pages	with	load	times	
between	0-2	seconds.	(Portent,	2019)	

• The	probability	of	bounce	increases	32%	as	page	load	time	goes	from	1	second	
to	3	seconds.	(Google,	2017)	

• The	highest	ecommerce	conversion	rates	occur	on	pages	with	load	times	
between	0-2	seconds.	(Portent,	2019)	

• As	page	load	time	goes	from	one	second	to	10	seconds,	the	probability	of	a	
mobile	site	visitor	bouncing	increases	123%.	(Google,	2017)	

	

Continuous	testing	
If	we	want	to	be	certain	that	our	app	performance	is	improving	with	every	build,	we	must	
test	at	regular	intervals.	And	with	great	statistical	precision	that	ideally	mimics	the	actual	
user	experience.	And	these	results	would	need	to	be	
automatically	compared	to	prior	builds	as	well	as	
competitors	apps.	By	performance	we	mean	app	
performance	and	not	load	testing,	which	would	likely	be	
carried	out	at	the	API	level	rather	than	the	UX.	While	we	
have	been	testing	both	performance	and	load	of	web	



	 	 	
	

2	

applications,	doing	so	on	native	mobile	apps	is	far	more	challenging.	And	in	fact,	the	most	
common	method	used	is	literally	a	stopwatch.	
While	testers	with	stopwatches	are	a	common	method,	the	accuracy	is	poor	and	no	better	
than	+/-	1000ms.	In	order	to	improve	an	app	at	every	turn	we	need	to	have	accuracy	at	
least	10X	that	of	a	human.	And	be	able	to	test	the	same	flows	over	and	over	again	to	average	
out	network	aberrations.	

	

Our	approach	to	providing	native	mobile	performance	testing	

In	AIQ	we	have	a	sophisticated	AI	based	autonomous	testing	capability	which	was	detailed	
in	an	earlier	chapter.	This	unique	technology	can	create	its	own	tests	(thousands)	achieving	
very	high	application	coverage	with	little	to	no	human	effort.	But	in	the	case	of	native	
mobile	performance	testing,	we	do	not	require	the	coverage	of	that	engine.	Instead,	we	
know	exactly	what	user	flows	we	need	and	want	to	compare	again	and	again.		

It	is	important	to	not	confuse	performance	testing	with	load	testing.	Performance	is	the	step	
by	step	responsiveness	of	the	app	to	the	users	eyes	under	normal	load	conditions.	Load	
testing	is	to	determine	the	scalability	of	an	application,	usability	under	large	load,	and	
perhaps	ultimately	where	the	app	may	fail	under	load.	Both	of	these	are	critical	in	all	app	
development.	But	faster	performance	to	the	user	results	in	improved	brand	perception,	
improved	productivity	and	increased	sales	in	the	case	of	ecommerce.	

Here	is	where	AI/ML,	and	specifically	image	or	object	recognition,	comes	into	play.	We	will	
need	to	measure	exactly	what	a	human	user	will	experience.	And	they	experience	it	literally	
on	the	screen	of	a	smartphone.	Not	Xpaths,	not	server	responses.	The	screen	itself.		

This	here	is	where	a	machine	excels.	Because	we	can	utilize	a	variety	of	algorithms	for	
image	recognition	to	recognize	aspects	of	a	screen	as	a	human	would.	For	instance,	a	buy	
button	or	the	like.	If	we	want	to	know	exactly	the	time	between	searching	for	an	item	to	
when	it	shows	up	to	when	there	is	a	buy	button	to	when	the	cart	has	the	item	in	it	(and	so	
on)	I	must	see	it	as	the	user	sees	it.	

A	human	can	recognize	a	BUY	button	for	example	regardless	of	where	it	is	on	the	page.	Even	
if	it	were	to	move	around	or	be	placed	sideways.	In	essence	we	“clip”	that	object	in	our	
minds	to	locate	it	and	execute	it.	So	the	process	for	a	machine	is	the	same.	We	need	to	train	
the	machine	to	recognize	an	object	taken	out	of	context,	and	then	look	for	that	object	once	
its	placed	back	in	context.		In	this	feature	set,	we	have	utilized	several	techniques	from	
CNN1’s	to	SIFT	to	SURF..	Starting	with	an	actual	“clip”	of	the	target	image,	we	use	this	to	
train	our	model.	While	CNN’s	need	a	fair	but	of	data,	SIFT	and	SURF	can	be	essentially	
trained	with	one	clip	of	an	object.	All	of	these	run	on	GPU’s	at	a	rapid	speed,	which	is	
required	given	the	number	of	screens	which	must	be	reviewed	by	the	machine.	

	

	
1	Convolutional	Neural	Networks		



	 	 	
	

3	

Applying	native	mobile	performance	testing	at	a	large	ecommerce	
player	
A	large	retailer	has	several	Ecommerce	apps	which	are	native	mobile.	They	compete	in	a	
highly	competitive	category	around	the	world.	How	fast	the	app	responds	directly	
correlates	to	likeliness	to	complete	a	purchase.	Measuring	the	timing	of	critical	Ecommerce	
user	flows,	point	to	point,	in	their	own	mobile	apps	as	well	as	competitors	is	critical	in	a	
hyper	competitive	space.	Fast	and	accurate	data	can	drive	improvements	with	each	build.	

A	new	feature	was	developed	leveraging	the	above	image	recognition	algorithms	leveraging	
cloud	GPU’s.	The	system	recognizes	screen	elements	in	iOS	and	Android	as	a	human	would	
and	reacts	similarly	to	the	way	a	human	would.	With	the	ability	to	operate	any	application	
and	accurately	time	actions	to	available	items	on	the	next	screen.	Including	cached	and	
server	requested	items.	The	result	is	rapid	accurate	data	that	improves	builds	and	increases	
sales.		

Specifically,	we	mimic	the	phone	screen	on	a	windows	computer	and	measure	the	delays	in	
the	screen	duplication	as	well	as	execution	of	steps.	This	data	is	used	to	adjust	the	measured	
timing.	

The	system	records	the	mobile	screen	at	30	frames	per	second	(or	one	snapshot	every	
33.33ms).	Each	frame	contains	encoded	timing	data	as	well	as	the	screen	replication	itself.	
This	is	captured	and	transcoded	as	black	and	white	since	color	information	is	not	required	
in	measuring	performance	timing.	

A	specific	user	flow	with	one	app	on	a	single	device	is	run	1000X,	from	launching	the	app	
(which	is	measured)	to	nearly	completing	the	purchase.	Executing	(automatically)	the	same	
user	flow	1000	times	generates	an	asymmetrical	bell	curve	of	results	that	frequently	
resembles	this:	

	

	

User	Flows:	

milliseconds	



	 	 	
	

4	

					 						 						 	

Above	is	an	example	of	one	user	flow	starting	from	launching	the	app	to	search	to	product	
to	add	to	cart	to	proceed	to	checkout	and	finally	placing	the	order.	Many	of	these	elements	
are	embedded	in	the	app	code	itself	and	can	appear	in	a	few	milliseconds	while	other	
information	may	arrive	from	the	server	to	properly	form	the	next	screen.	

The	image	recognition	is	trained	to	look	for	specific	screen	elements	which	a	user	might	
interact	with	or	use	to	determine	that	screen	was	ready	to	use.	The	image	recognition	
processing	is	performed	automatically	as	a	batch	rather	than	in-line	with	testing	as	
dedicated	cloud	resources	can	be	utilized	post	user	flow	runs.	The	number	of	screens	to	
evaluate	is	large	and	can	be	calculated	as	30	frames	per	second.	If	each	step	is	an	average	of	
two	seconds	and	there	are	5	screens	to	evaluate	that’s	300	frames	of	interest	in	one	user	
flow.	As	each	flow	is	run	1000X	that’s	300,000	frames	to	look	for	image	matches	in	for	one	
device/app	combination.	This	large	number	of	data	points	allows	for	accuracy	and	
statistical	significance	when	evaluating	the	results.	Multiply	this	by	the	number	of	apps	
across	various	countries	and	devices	(in	this	case,	the	client	requires	30	device/app	
combinations)	and	we	end	up	evaluating	ten	million	frames	in	any	run.	While	this	cannot	be	
done	quickly,	we	get	absolutely	accurate	and	comparable	results.	Comparable	to	prior	
builds	and	competitor	apps.	

After	at	least	1000	automated	runs	the	QA	team	can	retrieve	highly	detailed	dashboards	to	
compare	performance	between	devices	or	competitors	or	builds.	An	example	of	a	results	
dashboard	looks	like	this:	



	 	 	
	

5	

	

In	this	case	we	can	see	comparisons	of	three	different	apps	all	with	results	from	a	single	
location	in	China.	

	

	

Results	

• 97%							Improvement	in	timing	accuracy	
• 1000X			The	number	of	times	a	user	flow	re-runs	to	achieve	statistical	distribution	
• 99%	 Improvement	in	statistical	significance	
• 100%	 Reduction	in	manual	labor	
• 33ms	 The	timing	accuracy	of	the	image	recognition	technology	
• 9	 Number	of	apps	evaluated	
• 3	 Number	of	countries	with	devices	under	test	
• 10M+	 Screens	imaged	processed	and	matched	with	AI	

	

Summary	
There	are	many	reasons	to	want	to	understand	the	user	experience	on	mobile	apps,	from	
the	user’s	perspective.	In	m-commerce	actual	revenue	is	at	stake.	Milliseconds	can	make	a	
difference.	While	we	have	had	other	UX	driven	approaches,	none	was	designed	to	provide	
the	curve	of	“to	the	eyes”	results	across	1000	runs.	When	we	have	this	level	of	accuracy,	we	



	 	 	
	

6	

can	easily	surface	issues	in	any	new	build,	and	compare	our	results	to	those	of	the	
competition.	This	unique	type	of	performance	testing,	relying	on	image	recognition,	allows	
us	to	improve	our	mobile	app	performance	where	it	matters	most…to	the	user.	

About	the	author	

 
 
Kevin	is	CTO	and	Chair	of	Appvance.ai,	a	leader	in	AI	based	autonomous	testing.	He	has	
been	awarded	93	worldwide	patents.	
	
https://en.wikipedia.org/wiki/Kevin_Surace		
Twitter:		https://twitter.com/kevinsurace		
Linkedin:	https://www.linkedin.com/in/ksurace/		
	

About	Appvance	

Appvance.ai	is	the	leader	in	AI-driven	test	generation,	which	is	revolutionizing	how	
software	testing	is	performed.	The	company’s	premier	product	is	Appvance	IQ,	the	world’s	
first	AI-driven,	unified	test	automation	system.	It	helps	enterprises	improve	the	quality,	
performance	and	security	of	their	applications,	while	transforming	the	efficiency	and	output	
of	testing	teams.	Appvance.ai	is	headquartered	in	Santa	Clara,	California,	with	offices	in	
Costa	Rica	and	India.		
	
	
Visit	us	at		
https://www.linkedin.com/company/appvance/	
https://twitter.com/appvance	
https://www.facebook.com/AppvanceInc/		
	


