
1

Improve Test Coverage To Account For Run-Time
Environmental Variations
Author: Dr. Tieren Zhou, CEO – TechExcel, Inc.

Traditional testing involves defining test cases and assigning human testers or deploy automated

testing tools to ensure that each feature works properly. However, to fully ensure that these features

are working, we must consider the environments and changes to those environments where your

products are actually deployed.

Run-time environmental variations can drastically affect the way your products behave. It’s another

layer added to any functional or performance testing and can make testing complex. In this white

paper, we will discuss techniques for optimizing the scope of your tests to include these run-time

environmental changes.

Planning and Executing Test Coverage
Any testing should include test cases that define the procedures and expected results carefully, a

thorough test plan that includes these test cases, and test runs that are executed according to the test

plan.

2

Terms to Consider

➢ Test Cases and Test Library – The test library contains all test cases associated with a product.

Its properties include testing instructions, expected results and various environments a test case

can be run under.

➢ Test Procedure and Test Results – Define the testing procedure such that it can be executed

manually or automatically. The expected results should be defined in a way that after running

the test procedure, the behavior is as designed.

➢ Test Case Verification Points – When defining the test procedure, consider whether or not you

need to verify specific points during testing to conclude if the test is successful or not.

➢ Test Case Environmental Variables – Define environment variables under which the test case

can be executed. For example, the test case may be run against Windows or Linux, operating

system being the environment variable.

➢ Release Plan – Define the test coverage of the release to achieve the desired quality level.

Create as many test cycles underneath the release to fulfill the coverage. For example, the test

coverage should include all languages, all major operating systems, etc, that your product

needs to run on.

➢ Test Cycle – Define as many test cycles as needed to adhere to the coverage defined by the

parent release. A test cycle defines a target set of test cases with each test case potentially

spawning multiple tasks based on chosen environments. It’s also where test execution occurs.

For example, a specific test cycle may focus on the mobile platform while another focuses on

3

web with the parent release covering all platforms.

➢ Test Tasks – Test tasks originate from test cases. It’s an instance of a test case defined for a

specific environment the test case needs to run.

➢ Environmental Variable Variations – Environmental variables and a combination of their

variations presents a unique challenge to QA. Due to the sheer number of variations, it’s difficult

to achieve full coverage. There are computerized test coverage models to quantify test

coverage by selecting combinations of these EV variations. We will discuss both the

combination model vs. the street model.

Defining Test Plans for Functional Coverage
We can categorize test coverage into two coverage areas: functional testing coverage and coverage

with run-time environmental variable variations. For function testing coverage, there are mainly four

sources to retrieve test cases from.

Ø Via Test Case Library – Test case library is organized by function areas and often can

accommodate thousands of test cases.

Ø Via requirement (or product functions) – All products are created based on a defined set of

requirements. We can tie test cases to these requirements and when planning releases and test

cycles, we can select from these requirements to generate a set of test cases that need to be

tested.

Ø Via previous testing cycles and testing activities – By analyzing results of previous and current

test cycles, failed test cases may be retested again. Combined with recent development activity,

we can identify defects that have been corrected to pull test cases that need to be retested as

well.

Ø Via development efforts – Since development tasks and test cases are linked with parent

requirements, one of the sources for selecting test cases can be from developed tasks whether

they are newly fixed defects or new features.

Defining Test Plans with Run-Time Environmental Variations
To cover all run-time variations, we must use a method to represent run-time variation via definable

variables and their variations. To achieve this purpose, Environmental Variables are used. For each

variable we define a list of possible variations via its applicable values (or choices).

For example, a software can run under Windows or Linux, and can also run using SQL Server, Oracle or

MySQL which gives us a total of six combinations.

To further define applicable EV’s via rules, we introduce a concept of applicable rules for each test

case. Choices are “All Applicable”, “Selected Applicable”, and “Not Related”.

4

In the following sections, we will describe two models which both use environment variables and its

variations for coverage.

The Combination Model for Test Grids
The combination model is the more straightforward of the two. It can be defined using the following

steps:

Ø Select a set of run-time environment variables

Ø For each variable select what the applicable choices are

Ø Set the Display Order of variables

Ø Set the Display Order of applicable choices

Ø Form the combinations for the selected variables and their applicable choices

Ø Form the testing grid

Ø Use applicable rules for each test case, form the testing grid

The picture below shows the user interface to define a test release plan or test cycle via a Combination

Test Grid.

It is a normalized testing grid where each column represents a fixed set of variables with a unique

combination of choices of each variable. It is normalized because the combination takes the same set

of variables for each column.

5

The Street Model for Test Grids

The street model test grid works in a more flexible way and can provides a highly customizable test

matrix. It offers an Intuitive, Excel-like UI for designing EV and their variations.

The grid contains both x and y axes and a combination of environments and its choices. The picture

below is an example of a coverage for a video game built as a test grid using Excel:

To understand this model, we use a concept of a street with retail stores to illustrate.

Ø A retail street consists of multi-level buildings

Ø Each floor consists of stores selling different types of products from different manufacturers

(brands)

Ø Products correspond to EV variables, and brands represent EV Choices

Ø A store starts from the top floor with one product type (EV) with one or more brands (choices)

Ø From each store of any floor, you add more stores above. This is comparable to selecting a

new EV variable and its choices.

Ø When the building is completed, all stores are always at street level. In the street model, as you

add EV’s on top of each other, they are normalized because the lowest level EV is pushed down

6

to the ground level, eventually looking like multi-floor buildings.

Ø The street always consists of a unique combination of stores, or environment variables.

In the illustration below, the test plan or test cycle is displayed as a street model test grid.

Summary
In a competitive market for software development, the quality of the products is the only thing that

really matters. Concept and design cannot cover every environment variation especially when products

are put into production use. Fortunately, there is an effective way to ensure that everything might work

as planned by improving your test coverage using the above methods.

Whether you use a combination model of a test grid or a street model, both can ensure sustainable

success of your products. Optimize the way you test today by improving your test plans and execution

especially thousands of test cases need to be tested against ever-changing environment combinations.

TechExcel is the leader in unified Application Lifecycle Management. Customized solutions are tailored

for various enterprises and industries, with major usage in the video game industry, defense

7

organizations and hardware manufacturers. Solutions include requirements management, task

tracking and test management which can be integrated or used separately as standalone products.

Dr. Tieren Zhou, CEO and Chief Architect of TechExcel, has for 27 years, been a leader in the DevOp’s

solution industry by delivering a full suite of leading ALM, IT Service and helpdesk tools. Tieren’s

patented software development solutions and practical process design has been implemented by more

than 2,000 companies in 47 countries. Tieren leads TechExcel’s product management teams by

providing strong leadership, product vision and innovations. Tieren’s doctoral work focused on

laboratory automation, conceptual modeling, robotics, and artificial intelligence. He received his master

in Computer Science and Ph.D. in Artificial Intelligence from Kansas State University.

