
Increasing
Code Quality with
Automation and
Machine Learning

eGUIDE

C O P Y R I G H T 2 0 2 2

In the struggle to ship code out the door faster and faster, are you also creating a potential future time bomb ignoring code quality? Sometimes it can
be challenging to get buy-in about the value of high-quality code. Many short-sighted managers are only worried about the here and now - and don't
see the growing snowball of technical debt that is accumulating and will eventually come rolling their way. This eGuide has articles, case studies, and
other resources that speak to the value of code quality and how you can use automation and machine learning to optimize it.

6 Steps for Succeeding with
Test Automation in Agile
Lots of test automation efforts in agile
software development fail, or at least
do not maximize their potential. This
article looks at two main reasons test
automation may not live up to the
expectations that testers and other
stakeholders in the agile development
process have, then outlines six steps
to avoid falling into these traps. Here’s
how to succeed with test automation in
an agile environment.

How to Build a
Data-Driven DevOps
Decision Making Culture
The growth in AI and machine learning
solutions can enable teams to create
a modern data-driven DevOps culture
that streamlines development process-
es significantly, maximizes resources,
and improves software quality.

Dealing with a Test
Automation Bottleneck
The test team uses the test automation
system to execute thousands of test
cases because … why not? The tests are
running automatically, for free, so there
is no incentive to improve test efficien-
cy. Just run them all! But eventually, as
more and more tests are added, the sys-
tem becomes overloaded. Test runs are
delayed and you get a bottleneck. Don’t
throw more money—or new systems—
at the problem; do this instead.

The Evolution of
DevOps Testing Tools
The DevOps ecosystem has seen two
evolutions of tools, and we are on the
cusp on the third evolution. Within
these three evolutions of DevOps
tools there are established tools in the
various channel types, from coding and
code analysis, to build and QA,
and overall operations.

How AI is Transforming
Software Testing
The time needed to complete the slew
of required test cases directly conflicts
with the fast pace driven by agile-like
frameworks and continuous develop-
ment. The exploration of alternative
and superior testing methods, such
as automation and AI, is now a neces-
sity in order to keep pace and equip
QA and test teams with augmented
efficiencies.

How to Deliver Code Faster
With Test Automation
Powered by Machine Learning
How does predictive test selection
help prioritize the most important
tests to run, ultimately saving you
time and resources while delivering
software faster?

What’s Our Job When the
Machines Do Testing?
While many of the tasks across our
diverse test practices are similar, each
of our jobs has unique challenges,
so priority will be determined by the
specifics of our organizational context.
So your job, when the machines can do
testing, is to figure out what tasks you
want them to do for you.

Defensive Design Strategies
to Prevent Flaky Tests
More testing isn’t always better testing.
If your tests are unreliable, they can
cause more harm than good. “Flaky
tests” aren’t as rare as we’d like to
think, and there are a few things you
can keep in mind to avoid them and
help your development lifecycle move
more smoothly.

Increasing Code Quality with Automation and Machine Learning

2

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

In order to keep up with the ever-shorter release
cycles that come with the adoption of agile software
development, many development teams are embrac-
ing test automation as a means to continuously ensure
that every software release conforms to the desired
level of quality.

This is a significant shift from traditional software
development practices, where testing was often stuck
on at the end of the development process and seen
as a process burden rather than a benefit. Testers
working in an organization that has adopted agile
software development, moved to a DevOps culture,
and embraced continuous integration and continuous
delivery are therefore required to have at least a basic
level of understanding of how to effectively implement
test automation as part of their daily activities.

Unfortunately, lots of test automation efforts in agile
software development fail, or at least do not maximize
their potential.

I’d like to explore what I think are the two most import-
ant reasons for test automation not living up to the
expectations that testers and other stakeholders in the
agile software development process have. Then, let’s
look at strategies and tactics for how to avoid falling
into these traps in order to succeed with test automa-
tion in an agile environment.

Unreasonable Expectations
The first of the two main reasons I see so many auto-
mation efforts fail to reach their potential is because
of the unreasonable expectations that precede its im-
plementation. Too many team leads, development and
project managers, and C-level executives (although
other roles are not innocent, either) see test auto-
mation as the one-stop solution to all of their testing
bottlenecks.

However, reality has shown over and over again that:

• Implementing test automation takes time, effort, and
specific skills

• Automation is an activity that supports testers, not
replaces them

• Far from every activity related to testing can be auto-
mated

Yet there’s still a widespread belief that test auto-
mation somehow, magically and with the press of a
button, will perform all of the required testing for you.
When, after a couple of months of diligently building
and running tests, this notion turns out to be a fantasy,
the people who have been working hard on getting
the automation to work are often scapegoated, and
sometimes even laid off.

In my opinion, the best way testers and automation
engineers can deal with this problem is to think and
communicate before acting. Make sure that all stake-
holders are on the same level with regards to what you
can reasonably expect from automation. Take a look at
previous efforts, both within your organization and in
the wider software testing and development communi-
ty, and learn from those experiences.

What should work? What will likely not? Don’t expect
automation to be the magic bullet that will solve all of
your testing problems.

6 Steps for Succeeding with Test Automation in Agile
Bas Dijkstra

3

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

Lack of Attention Dedicated to
Automation
The other main cause of failing automation efforts
is the lack of time that development teams (and, on
a larger scale, whole organizations) allow for creat-
ing useful, maintainable, and effective automation
solutions. Even though it should not be a surprise that
implementing automation takes time and effort, auto-
mation is still too often one of the first things to suffer
when time becomes sparse.

This applies to projects, but it also applies to teams
working in an agile environment. Even though automa-
tion is high on the wish list of many a software devel-
opment team, when the end of a sprint comes close,
delivering features almost always takes precedence
over automation.

Note that I do not think that this is necessarily a bad
thing. In the end, it’s the features that deliver value
to the end-user, not the automated tests that help
safeguard them working correctly. In the long term,
however, teams that allow the releasing of features to
take precedence over everything might just run out of
breath while trying to make deadline after deadline.
It’s almost as if they forget that adopting an agile way
of working is about creating software at a sustainable
pace while receiving feedback early and often, not
about delivering features at warp speed.

Not allowing for enough time to create a solid automa-
tion solution also has an unwanted side effect: If you

don’t award automation the priority it deserves (and
that may not be the highest priority), it is unlikely that
your team members will have enough time to become
skilled automation engineers. I see automation as a
craft, and like any other craft, it requires continuous
learning and honing of your skills.

Making Automation Part of Your Agile
Development Process
Now that we’ve detailed two main reasons for failing
automation efforts, I’d like to propose a step-by-step
guide to help you avoid these pitfalls and successful-
ly implement test automation as part of your agile
software development activities. This is by no means a
definitive guide, and not all steps might apply equally
to your situation. But following them might just help
you to be more successful in your agile automation
efforts.

1. Set reasonable expectations
As I said before, the success of any automation efforts
starts with reasonable expectations. I find that asking
and agreeing on the “why” is a good way to set these
expectations. Why are we automating in the first place?
Why do we think we need test automation at all?

Note that in my opinion, there are good and, well, less
good answers to this question. “Because we want to
be able to get fast feedback on every commit done by
a developer” is a good reason, whereas “Because we
don’t want to have manual testing at all” is a prime
example of a source of unreasonable expectations.

Even though it should
not be a surprise
that implementing
automation takes time
and effort, automation
is still too often one of
the first things to suffer
when time becomes
sparse.

4

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

2. Treat test automation as software development
Make sure that all parties involved are aware that the
introduction of test automation is essentially equal
to introducing a software development project within
your software development project.

This applies to both the project planning aspect (you
should assign resources to it and allow for time spent
on developing and maintaining the automation, etc.)
as well as the technical implementation of it (you’re
writing code, so be sure to apply good development
patterns and practices and respect the fact that test
automation is a craft that requires specific skills).

3. Assign dedicated resources to automation
In order to be successful with test automation in your
agile software development efforts, you’ll need to
make sure that the people responsible for creating and
maintaining the automation both have the right skill
set and get enough time to do so.

The number of people who will dedicate their time
toward automation depends on a number of factors,
including their skills, the type of automation that needs
to be created, and the complexity of and risk asso-
ciated with the application to be developed. If your
organization currently does not employ enough people
to fulfill your automation desires, or the people lack
the required experience, temporarily hiring external
experts might be an option worth considering to get
you started.

4. Pick a starting point
Just like with any significantly large project, it might

look like a daunting task to decide where to start with
test automation. I have two pieces of advice here:

• Start either with some low-hanging fruit (this helps
show stakeholders the added value of test automation
quickly) or with a part of your application associated
with the highest risk or the highest impact of defects.

• Try to avoid starting with end-to-end test automation,
like using Selenium. While this might seem like the
obvious choice when you’re looking to write automat-
ed regression tests, this type of test is the hardest to
write, the slowest to execute, and the most prone to
fail, either due to changes in the application under test
or to false positives caused by synchronization or envi-
ronment (e.g., test data) issues. Instead, see if you can
create a solid set of meaningful unit tests, or leverage
API-level testing to verify critical business logic.

5. Make automation part of your definition of done
When you’re working in an agile setting, it makes sense
to make test automation an integral part of your defi-
nition of done for a given feature. Try to avoid these
two traps, though:

• Including a statement like “All tests should be auto-
mated” or “We should have automation in place for
every feature delivered”—sometimes automation
doesn’t make sense, is cumbersome, or is even down-
right impossible to create. Instead, opt for statements
like “Existing automation is updated to reflect changes
brought by this feature” or “Additional automation
has been created where deemed relevant and useful
by the development team.”

• Relying on percentages—“100 percent code coverage”
is an empty statement. It says nothing about the qual-
ity or relevance of the tests. Likewise, “80 percent of
all tests done are automated” does not make sense,
either. For one, this relies on a one-to-one translation
of tests executed to automated tests, an approach
that has time and again proven to be ineffective. But
more importantly, how do you define that 80 percent
in the first place? Is that 80 percent of everything that
can be automated or of all testing performed? I think
you catch my drift here.

6. Learn and adjust
This should not come as a surprise anymore: Test
automation is a software development activity, and
when you’re doing this in an agile way of working, it
makes perfect sense to apply the agile principle of fast
feedback, quick evaluation, and learning on the go.

You don’t have to get it right from the start! Just like
with your application under test, take the time to
experiment, evaluate early and often, learn from any
mistakes, and stick with what works. Over time, and
with the right amount of nurturing, this should lead to
an automation approach that fits hand-in-glove with
your software development efforts.

Please note that every situation is different, and what
works for one organization might not work as well
somewhere else. Having said that, I sincerely believe
that the information above will be helpful to most
organizations that are struggling with effective testing
and are therefore looking toward automation as a
means of improving their agile testing efforts.

5

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

There is no doubt that companies today are awash in
information. By itself data is of little use, but business-
es who correlate it, gain insights into their operations
and can change themselves for the better. This is both
the opportunity as well as the challenge in creating
Data-driven DevOps. Development teams have an
abundance of data to leverage, and therefore an
abundance of potential to speed up application testing
and delivery, using data to drive software quality and
velocity. Regardless of your team or organization size,
adopting a data driven culture can start today.

Take Advantage of Existing Data
The first step in building a data drive DevOps culture
requires organizations and teams to understand what
data points and metrics they already have and what
they are missing. Tools including Jenkins, generate
growing volumes of Continuous Integration (CI) data

How to Build a Data-Driven
DevOps Decision Making Culture
Adopting a Data-Driven Approach to Improving CICD
Pipeline with AI
By Harpreet Singh

outputs. Development teams pull that data from hun-
dreds of libraries, modules, and services, via scripts
running during various parts of the workflow. The in-
formation sped up development’s front-end, but more
work is needed on the back end. Taking advantage of
existing data can come in different forms - one exam-
ple is correlating pass/fail data of your tests to flaky
tests. This existing data would be helpful to identify
how flaky a test is likely to be

Automate Data Delivery to
the Right People
Holes are also evident as developers process feed-
back. Individuals adding new features and fixing bugs
often do not get the data they need in a timely manner
because it is generated at the end rather during the
testing process. Getting the developers the notifica-
tions when the first test failed would be an impactful

6

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

https://techbeacon.com/devops/how-use-metrics-measurement-drive-devops
https://www.launchableinc.com/flaky-tests-insights?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://www.launchableinc.com/flaky-tests-insights?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia

adjustment. Another option is updating building noti-
fications to be smarter - identifying and messaging the
right developer. Running a git-blame on lines of code
generates a build error and immediately notifies the
Git author of the failure. They work on a fix immediate-
ly rather than wait hours for the full test results.

Simple Data Driven Solutions Add Up
Incorporating data into your DevOps cycle doesn’t
have to be a large undertaking. There are often
low-hanging fruit opportunities that you can incorpo-
rate to improve productivity or efficiency. For instance,
if notifications for test failures go to all engineers, take
a look at your failure notifications and identify any that
are caused by infrastructure failures (server disk space
or database down). Those don’t necessarily need to go
out to all of your engineers, but likely rather a specific
group or person. Setting up a simple automatic scan of
the last 50 lines of the build log for specific keywords
around those error types, and sending an automatic
notification to the right people would reduce notifica-
tions to your developers and lessen the notification
fatigue or frustration caused by errors.

Factor in the Future of DevOps
When adopting data driven DevOps, we can all learn
from leading organizations incorporating it at scale
and the emerging trends. Companies including Google
and Facebook have shared how they are harnessing
machine learning to prioritize tests to run for each
code change. A new approach to test impact analysis
is Predictive Test Selection, which combats long cycle
times by tracking your builds and selecting a subset of

Artificial Intelligence and
machine learning products
enable them [development
teams] to correlate that
information in new ways
and find solutions to
long standing problems,
such as slowdowns in
Continuous Delivery.

tests that are critical to run. We’ve also done a deep
dive webinar into the state of the art of Flaky Tests,
examining how teams are tackling the prevalent pest.

Measuring Data Driven DevOps Progress
There are at least two metrics to track when incorpo-
rating data drive DevOps into your organization. The
first are the key performance metrics that are helpful
to your team to track and celebrate internally, like
test runtime, time from code push to build complete,
and code coverage. The second are metrics to show
progress to leadership, which can include lead time
for code changes, time to restore service, and change
failure rate.

Development teams are able to collect more informa-
tion today than ever before. Artificial Intelligence and
machine learning products enable them to correlate
that information in new ways and find solutions to
long standing problems, such as slowdowns in Contin-
uous Delivery. This expanding solutions enable teams
to create a modern data driven DevOps culture that
streamlines development processes significantly, maxi-
mizes resources, and improves software quality.

7

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

https://git-scm.com/docs/git-blame
https://engineering.fb.com/2018/11/21/developer-tools/predictive-test-selection/
https://engineering.fb.com/2018/11/21/developer-tools/predictive-test-selection/
https://www.launchableinc.com/what-is-predictive-test-selection?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://www.launchableinc.com/webinars/the-state-of-the-art-in-tackling-flaky-tests?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://www.launchableinc.com/webinars/the-state-of-the-art-in-tackling-flaky-tests?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia

It’s usually difficult to get management approval for
recruiting more people. It is much easier, on the other
hand, to get approval to spend money, especially
when you work at a successful company with a healthy
budget. Not to say that you use money as wall-to-wall
carpeting, but if you can justify the expense by a pos-
itive ROI analysis, in most companies there is a good
chance the request will be approved.

However, this can actually have some negative side
effects, at least in the testing world.

Let’s imagine that we built a wonderful test automa-
tion system. The system receives a list of tests to run
and executes them in parallel on a large number of
computers. The system is so good that it encourages
testers to automate more tests, as doing so clears up
the testers’ time to do some real engineering work, like
think of new and interesting test cases, develop tools
that allow deeper testing, and participate actively in
reviews. Besides, it’s much more fun to write new code
or develop a script than to execute the same test for
the seventeenth time.

The test team uses the automated system to execute
thousands of test cases—even on the daily test cycle—
because … why not? The tests are running automati-
cally, for free, so there is no reason to take the risk of

missing a possible regression. Just run them all! It even
improves the ROI of the automated system.

The system is indeed lightning-fast, but eventually, as
more and more tests are added, it becomes overload-
ed. Test runs are delayed and the test automation
system becomes a bottleneck. At a certain point, the
program managers fail to get test results on time, and
they start raising flags—and hell.

Everyone realizes we must go over all the test cases
and define priorities: Which test case must be exe-
cuted each day? What’s enough to run once a week?
Which tests are inefficient and could be made to run
significantly faster?

But with thousands of test cases in the system, such
prioritization or optimization of effort is a significant
investment, and no one has the time to do it. Everyone
is swamped with executing tests that are still manual,
investigating failures, or testing possible bug fixes.
If only we had some time to work on this! If only we
could recruit a few junior engineers to do execution
and free the senior engineers to improve the existing
tests!

Recruiting new people is out of the question. But there
is a solution that, in one fell swoop, will reduce the
test cycle time by 50 percent and solve the problem:

Double the number of computers controlled by the
automation system. This is practical and it’s easy to
prove the ROI, if only by showing that version release
time will be shortened by half the test cycle time. And
besides, it’s easier to get approval to spend money
than to get an open req. It also takes much less time to
achieve results: A new person must learn the product,
understand the technology, and find out how to oper-
ate the coffee machine. A new computer only needs a
power line and network connection to start executing.

So we buy more computers and connect them to the
system, and indeed, the bottleneck miraculously dis-

Dealing with a Test Automation Bottleneck
By Michael Stahl

8

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

appears … only to reappear a few months later, when
more tests are added to the system.

One of the reasons for this phenomenon is the tragedy
of the commons. The principle, according to Wikipedia,
describes “a situation in a shared-resource system
where individual users acting independently accord-
ing to their own self-interest behave contrary to the
common good of all users by depleting or spoiling
that resource through their collective action.” In an
organization-wide test automation system where each
team can submit unlimited test cases for execution,
the principle explains why no team has an incentive to
become more efficient.

Let me illustrate with an example.

A certain project has five test teams that share a com-
mon test automation system. The system, as expected,
is overloaded and delays test cycle schedules. Each team
understands that it should invest effort in reducing test
time, but something is blocking their taking action.

Assume that if each team were given sole use of the
system, running each team’s test would take twelve

hours apiece. Since all the teams are sharing the test
system, the overall duration of a test cycle would be
sixty hours. Team A decided to tackle the overload
problem by reducing their test cycle time by 50 per-
cent, to six hours. They improved the test time of all
tests, removed redundant tests and merged others
to save setup time, and did needed modifications to
make their tests robust and save time lost for false
failures. Eventually, they met their goal.

The overall test cycle now takes fifty-four hours. So,
for the superhuman effort done by team A, the overall
reduction in test cycle time was 10 percent. Since the
other teams continue business as usual, the time
saved by team A will quickly be consumed by new, inef-
ficient tests added by the other teams.

This reality means that no team has an incentive to
invest in improving their test efficiency.

Another problem that excessive testing brings is an in-
crease in the number of false failures. Any time we run
a test cycle, some tests will fail—not due to a product
problem, but to some problem in the test itself, the test

environment, or the automation system. It could be a
hard drive crash, an overheated motherboard, or a flaky
connection. The number of such cases depends on the
skill level of the testers developing the automated tests
and on the robustness of the test framework, but there
always is some level of incorrect failure “noise.”

In many cases, a rerun of the test passes. And while
the percent of bogus failures may stay constant, the
more tests we load to the system, the more false fails
will occur, with the associated cost of engineering
investigation and correction time. This further reduces
the availability of resources to work on test efficiency
improvements.

I have witnessed this process taking place not only in
testing, but also in DevOps. Each check-in of code trig-
gers a set of continuous integration (CI) tests. CI runs
on a central, automated system, and the tendency of
test time to get longer happens there as well.

It happens naturally because, as more functionality is
added to the product, more tests must be added to
the CI test suite. It can also happen when a new project

Any time we run a test cycle, some tests will fail—not due to
a product problem, but to some problem in the test itself,
the test environment, or the automation system.

9

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

is added in parallel to existing legacy projects. Whatev-
er the reason, once the system is overloaded, delays
start to occur. CI results that took only a few minutes
when first implemented now take half an hour. The de-
velopers become accustomed to doing check-in before
lunch. A few months later, lunchtime is not enough
anymore. The developers get used to doing check-in
at the end of the day and letting CI tests run at night. A
few months later … You get the idea. And once again,
DevOps solves the problem by buying more computers
to execute CI tests.

Once this cycle starts, it is very hard to stop it. The dai-
ly pressures and the need to make fast improvements
mean that throwing money at the problem is almost
always the most logical solution. Every now and then
some teams manage to hold a blitz of improvements
that makes a difference for a few months, but then the
problems return.

Since it is so hard to fix the problem after it’s started,
prevention is a better approach. Here are three pre-
vention measures you should consider:

1. Invest effort in making sure only robust tests
are added to the automation system. Brittle tests
will later fail intermittently during runs, wasting engi-
neering time in investigations. This means that every
automated test must pass a certain quality bar before
being admitted to the system.

One approach is to create a checklist that each
automated test must pass. This checklist should be
realistic and short. If the list is too long, it will not be

used. (Many years ago I wrote a checklist that took
three days to complete; I will let you guess how much
use it saw. Half an hour is a much better goal.) Once a
workable checklist is in place, it will influence the de-
sign and implementation stages. Since test developers
know that eventually they will be evaluated against the
checklist, many of the checklist requirements will be
taken care of during the test implementation phase.

2. Be aware of the impact of a long test time,
and invest thought and effort to reduce the time
of each test, even when it seems unnecessary.

When I tested Wi-Fi cards, almost all the tests started
with a “Connect to the network” step. To ensure that a
connection was achieved, we had a CheckConnection()
library function, and almost every test used it. The
function guaranteed a good connection by transferring
a file back and forth between the Wi-Fi client and the
network. To the engineer who designed it, it was a trivial
check, with a runtime that looked very reasonable: 15
seconds. For one test, this is indeed not a problem, , but
when used by a thousand tests cases, this routine alone
was responsible for four hours of test time in each test
cycle. Another example is adding a wait() to the test
code to give the system time to finish some activity or to
stabilize. If a wait time of one second is enough, a wait
time of ten seconds, happening again and again, will
eventually buy itself a few more computers.

The best time to streamline a test case is during the
test development stage, when the test engineer knows
all the considerations and details of the test case.

Later, it is much harder to go over all the tests, one by
one, and look for possible improvements.

3. Define up front how much test time each test
team gets on the system. This targets the tragedy
of the commons and can be implemented both as a
preventative measure and as an effective route to take
when experiencing a bottleneck problem. Practically,
this is done by allocating test machines to each team.

Going back to the previous example, if the system
has thirty computers, each of the six teams would get
five computers and decide how to use this resource.
For team A, the efficiency effort now pays back big
time because their test cycle only takes half the time
of the other teams. To start with, it looks great in the
reports. Additionally, each saved hour is now at team
A’s disposal to execute new tests. It creates a situation
where each team is incentivized to improve their test
efficiency.

So the next time you are tempted to solve a problem
by throwing money at it, stop for a minute and ask
yourself if you are a victim of the tragedy of the com-
mons. Would spending money really get to the root
cause of the problem, or would it make better sense to
spend effort in making processes more efficient?

10

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

Engineering teams face the pressure to continuously
deliver new features fast. Theoretically developers
could pump out new iterations multiple times a day,
but parts of the DevOps cycle, including testing and
Quality Assurance, aren’t as fully optimized for CICD
as other facets of the cycle. The next wave in machine
learning testing solutions are emerging to seize this
opportunity.

The DevOps ecosystem has seen two evolutions of
tools, and we are on the cusp on the third evolution.
Within these three evolutions of DevOps tools there
are established tools in the various channel types,

from coding and code analysis, to build and QA, and
overall operations.

The first evolution of tools was the craft, artisan one-
off manual tool approach. Within that first, craft level
QA section, Selenium and JUnit laid the foundation
of testing tools. The next iteration was the adoption of
automated, at-scale tools that focus on repeatability.
As the need for scalability grew, automated tools like
Sauce Labs and Accelerator evolved. Automated test-
ing tools have enabled us to achieve repeatable and
scalable testing, but there are still significant hindranc-
es to velocity.

The next evolution of DevOps testing tools is advanc-
ing the intelligence of the tools, making them smarter
by utilizing AI and machine learning. Maturing their
automation capabilities, the next phase in these tools
will take the processing of tests to a new level by also
prioritizing test suites further speed up test runs.

DevOps Testing Tool Limitations
Although we’ve come far with testing automation, sev-
eral factors continue to dampen the velocity of larger
testing cycles. Organizations might be working to shift
left, but test suites have varying load sizes and the
more complex tests require more time. User accep-

The Evolution
of DevOps
Testing Tools
The Next Generation
of CICD Testing
Automation Aims at
Increasing Velocity

By Alastair Wilkes

11

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

https://www.launchableinc.com/selenium-and-launchable?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://docs.launchableinc.com/sending-data-to-launchable/converting-test-reports-to-junit-format?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia

tance testing and integration tests can take time
because of the variables included. Truly shifting left
and running tests sooner would result in catching risks
earlier.

Along with long test times taxing testing cycles, flaky
tests plague development teams and waste time and
resources. Typically when flaky tests are suspected,
developers have to sift through large volumes of test-
ing data to determine the problem source, and many
times, there are simply not enough clear signals.

Given today’s application design complexity and the
dynamic nature of run time decisions, the only way to
solve the problem is through deepening automation
functionalities. Progressing testing automation relies
on the creation of new, intelligent machine learning
testing tools.

The next evolution of
smarter testing automation
will harnesses machine
promises to bridge that gap
and speed up development.

The Hurdle to the Next Evolution
of DevOps Testing Automation
Developing a machine learning DevOps testing tool
requires a great deal of specialized expertise from
individuals trained to be data scientists. Companies
need individuals like an AI QA strategist, someone who
can weave AI into the DevOps process. The reality is
that there is not much of that expertise available in the
market. High end consulting firms, like McKinseys, try
to help but the void is large.

Companies must now develop that expertise them-
selves, which is impractical. A self-built machine
learning stack is extremely complex and expensive
to deploy. The individuals who are familiar with it are
rare and expensive. Unless a business has the tech-
nical depth of the Googles of the world, they lack the
infrastructure needed to build their own in-house
practice. The task is well beyond the purview of small
and medium companies.

Corporations are trying to drive investments in pure
math skills into QA teams and embed data scientists into
each one. But that process may be a long term fix —
maybe five to seven years — so what do they do today?

The Current Landscape of Intelligence
in DevOps Testing Solutions
The latest level of DevOps tools is the next generation
of automation. It builds on the automation tools and
elevates the capabilities by incorporating machine
learning and decision making by harnessing statistics.
This next evolution consists of a number of startups

emerging, and their tools can be sorted into two cate-
gories: scaling tests and prioritizing tests.

DevOps Solutions for Generating Tests
This category focuses on the issue of not enough tests
and is more mature with companies like Mabl. AI is
used to generate tests where none exist primarily in
the UX testing space. This category addresses specif-
ic types of testing, say a bot that generates tests for
mobile web pages. The more tests get automatically
generated, determining what tests are effective be-
comes a problem.

DevOps Testing Solutions for
Identifying Critical Tests to Run
This category focuses on solving the problem of having
too many tests that take too long. A more nascent cat-
egory, teams like Facebook have been using predictive
test selection tools to drive efficiency in the testing pro-
cess. Companies like Launchable are trying to bring this
to the market. Predictive Test Selection that combines
coding and quality into one practice. We do this by
taking data from your Git changes and past test results
to quickly deduce where problems lie, so developers re-
lease high quality code faster. Launchable is a layer on
top of your existing CI pipeline and tooling. The Launch-
able CLI interfaces with your existing build and test
tools like Selenium, Maven, Gradle, and Ant.

Enterprises need to push new software releases out at
a faster rate. Testing velocity has been a DevOps op-
portunity to capitalize on. The next evolution of smart-
er testing automation will harnesses machine promis-
es to bridge that gap and speed up development.

12

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

https://research.fb.com/publications/predictive-test-selection/
https://www.launchableinc.com/predictive-test-selection?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://docs.launchableinc.com/resources/integrations?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmediahttps://docs.launchableinc.com/resources/integrations?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmediahttps://docs.launchableinc.com/resources/integrations?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://docs.launchableinc.com/resources/integrations?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmediahttps://docs.launchableinc.com/resources/integrations?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmediahttps://docs.launchableinc.com/resources/integrations?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia

From mobile apps that command home appliances to
virtual reality, the digital revolution is expanding to cov-
er every aspect of the human experience. The majority
of teams developing this technology are using the agile
rapid delivery framework, which equates to roughly a
new launch every two weeks. Of course, those apps and
devices must be tested to ensure an optimal experience
for the end-user before each launch, but at that pace,
manual testing is simply inadequate.

The time needed to complete the slew of required test
cases directly conflicts with the fast pace driven by ag-
ile-like frameworks and continuous development. The

exploration of alternative and superior testing meth-
ods, such as automation and AI, is now a necessity in
order to keep pace and equip QA and test teams with
augmented efficiencies.

AI is showing great potential in identifying testing
defects quickly and eliminating human intervention.
Such advances have provided the capability to deter-
mine how a product will perform at both the machine
level and the data-server level. And in the current era,
where emphasis is on DevOps and continuous inte-
gration, delivery, and testing, AI can speed up these
processes and make them more efficient.

Just like automation tools already have, AI is going to
aid in the overall testing effort.

AI has a proven ability to function with more collective
intelligence, speed, and scale than even the best-fund-
ed app teams of today. With continuous development
setting an ever more aggressive pace, along with the
combined pressure from AI-inspired automation,
robots, and chatbots, it begs the question: Are testing
and QA teams under siege? Are QA roles in jeopardy of
being phased out or replaced, similar to the manufac-
turing industry?

Over the past decade, technologies have evolved dras-
tically, but one aspect that remains constant is human

testers’ interaction with them. The same holds true for
AI. To train the AI, we need good input-output combi-
nations, which we call training data sets. We need to
choose a training data set carefully, as the AI starts
learning from it and creating relationships based on
what we give to it. It is also important to monitor how
the AI is learning as we give it different training data
sets because this is going to be vital to how the soft-
ware is going to be tested. We would still need human
involvement in this training.

It is important to ensure that the security, privacy,
and ethical aspects of the AI software are not compro-
mised. All these factors contribute to better testability
of the software. We need humans for this, too.

We will continue to do exploratory testing manually,
because there are some things still best left to human
minds. But we increasingly will use AI to automate
processes while we do this exploration. Just like auto-
mation tools, AI would not replace manual testing, but
instead complement it.

With time, the maturity level of AI automation will sig-
nificantly grow. Teams will start seeing benefits and will
realize the need to shift their thinking in terms of how
they view software systems and how they can be tested.
The future looks bright for AI-based testing solutions.

How AI Is Transforming Software Testing
By Raj Subrameyer

13

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

How to deliver
code faster with
test automation
powered by
machine learning
By Alastair Wilkes

1. https://martinfowler.com/articles/branching-patterns.html#healthy-branch

to as “the unit tests” since the commit suite usually is
mostly Unit Tests).

Ideally the full range of tests should be run on every
commit. However if the tests are slow, for example
performance tests that need to soak a server for a cou-
ple of hours, that isn’t practical. These days teams can
usually build a commit suite that can run on every com-
mit, and run later stages of the deployment pipeline as
often as they can.

This means developers get fast feedback, but only for
some tests. Tests are typically distributed into the
pipeline in a coarse-grained manner: how long an
entire suite takes to run. Distributing this way does
mean some tests, like unit tests as Martin says above,
do get run earlier. But if your quick unit tests usually
pass but your long-running end-to-end tests fail often,
developers may find themselves waiting even longer
for the most important test failures.

Problem: Long test feedback delays
Most software teams seek an ideal state: a green build
for every commit on the main branch. Every commit
can be released, and developers never check out a bro-
ken build. To achieve this, a new project with a small
test suite might run all of its tests on every commit or
push, providing very quick feedback to developers.

This really is an ideal state, though. Over time, projects
inevitably grow in scope leading to more tests. More test
suites are often added, too, which changes test growth
from linear to exponential. These additional tests drive
up the overall test feedback delay for developers.

To keep the execution time down, you might provi-
sion more cloud testing infrastructure, but this is a
non-starter for many teams such as those building
embedded software.

Eventually, you need to choose which tests to run when.
You need to trade off risk for feedback time. A natural
consequence is to keep the fast suites earlier and move
the slower suites later, as Martin Fowler explains:1

There is a tension around the degree of testing to
provide sufficient confidence of health. Many more
thorough tests require a lot of time to run, delaying
feedback on whether the commit is healthy. Teams
handle this by separating tests into multiple stages on
a Deployment Pipeline. The first stage of these tests
should run quickly, usually no more than ten minutes,
but still be reasonably comprehensive. I refer to such a
suite as the commit suite (although it’s often referred

14

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

https://martinfowler.com/articles/branching-patterns.html#healthy-branch

Solution: Apply machine learning
to test execution
These concepts come together in the form of predic-
tive test selection. A predictive test selection algorithm
selects the most important tests to run based on the
actual changes being tested. In the last few years,
several published research papers have revealed the
potential for predictive test selection, and now we’re
seeing examples of industry applications from compa-
nies like Facebook.2 To achieve this,various historical
inputs (‘features’) are used to build a predictive model
that can then be queried for test cases in real time
upon every test execution. Depending on the algo-
rithm, these inputs could be information like file paths
changed, number of lines changed, relative location of
modified lines, author information, test duration, or
any other metadata that might be relevant.

At Launchable, we want to unlock this potential
for all software teams.

Let’s see how it works in practice. First, we create a
predictive model using historical data. We evaluate
the quality of our predictive models using something

A predictive test selection
algorithm selects the most
important tests to run
based on the actual changes
being tested.

we call a confidence curve. When we run test data
through the model, this curve shows the percentage
of tests that must be run in order to achieve a desired
confidence level. Confidence tells us how far along the
model thinks tests have come. It’s modeled after the
intuitive sense of the word: how much confidence do
we currently have in the software being tested, given
that we’ve already run some tests and have not run
others? If it’s 100%, it means we are pretty darn sure
that the software has no failing tests.

For example, here’s a confidence curve for a leading
car company’s pre-merge test suite from one of our
case studies:

This curve immediately reveals the value of an intelli-
gently selected subset: with predictive test selection,
a team can run a fraction of a test suite and still
achieve high confidence.

Conceptually, our approach starts by reordering tests.
By default, most test suites run in an arbitrary order.
This means many failures aren’t caught until halfway
through a run or later. Using the model created earlier,
we can now reorder tests based on the changes being
tested to execute the most important tests first.

Reordered execution alone is useful for reducing
feedback delay for developers, because now the
most important tests get run before less important
ones. This means that any real-time feedback they
receive (like chat notifications or streaming build logs)
now comes in much sooner.

2. https://engineering.fb.com/developer-tools/predictive-test-selection/ 15

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

https://www.launchableinc.com/customers/reducing-slow-test-cycles-at-rocketcar-case-study?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmediahttps://www.launchableinc.com/customers/reducing-slow-test-cycles-at-rocketcar-case-study?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://www.launchableinc.com/webinars/how-to-eliminate-slow-test-cycles-for-developers?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://www.launchableinc.com/webinars/how-to-eliminate-slow-test-cycles-for-developers?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://engineering.fb.com/developer-tools/predictive-test-selection/

We then take that concept one step further by remov-
ing the least important tests from execution. We call
this an adaptive subset: given a set of changes, a set
of tests, and an optimization target (e.g. maximum
execution time or minimum confidence) the Launch-
able service returns a subset of those tests, specifically
reordered for optimal execution.

This method reduces execution time with minimal
introduction of risk. The example confidence curve
above shows how we can achieve 90% confidence in
only 20% of the execution time. Other example curves
perform even better, such as 90% confidence in 10%
time. This remarkable reduction in execution time with
minimal additional risk lets teams distribute their test
suite in a more finely grained manner, dramatically
reducing test feedback delay.

This remarkable reduction in execution time with
minimal additional risk lets teams distribute
their test suite in a more finely grained manner,
dramatically reducing test feedback delay.

Real world applications: delivering faster
and reducing risk
However, let’s go back to our original problem of
coarse-grained test distribution. In contrast, adaptive
subsets enable teams to distribute their tests in a
fine-grained manner. They can run the tests that are
more likely to fail earlier and tests that are less likely
to fail later, instead of being limited to distributing
by suite.

This approach doesn’t just reduce feedback delay –
it also reduces risk. The later a problematic test runs,
the more time the risk of failure exists in the system.
Adaptive subsets shift the highest risk tests earlier in
the process to help teams eliminate risk while the blast
radius is still small.

For example, a team can select a small subset of a
long running UI test suite. The shorter execution time

lets them run this suite more frequently, earlier in the
lifecycle. This would provide quicker feedback on the
most important tests while the full suite still runs later.
Similarly, another team could shift some tests right
by only running a subset of an existing suite and then
running the entire suite later in the lifecycle.

Adaptive subsets are also a great solution for teams
with fixed testing resources. In particular we see this
with teams writing embedded software, running tests
on physical hardware that is hard to acquire. Those
teams don’t want to waste those precious resources
running tests that don’t matter. Similarly, adaptive
subsets can also reduce testing infrastructure costs
and reduce queueing time; if you’re running fewer tests
(but maintaining high confidence), you’re able to get
more out of the hardware you already have or even
reduce your spend.

16

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

The application of analytics, artificial intelligence (AI),
and machine learning are transforming jobs in indus-
tries once thought to be “safe” from automation.

Law firms are using AI-based machines to do the
research that used to define the role of first-year
lawyers. Trading decisions for our retirement accounts
are managed by algorithmic robots crunching through
massive amounts of historical data and real-time
market metrics. The progress of the autonomous
vehicle, underpinned by AI, is on the verge of replac-
ing drivers across the transportation sector. What
businesses in industry after industry have uncovered
is this: Processes that have large amounts of data, a
representative model, and a generally understood set
of rules are candidates for automation.

Geoff Colvin, the author of Humans Are Underrated,
points to the first-year lawyers described earlier as a
model for those of us whose job consists of analysis,
subtle interpretation, strategizing, and persuasion.
These jobs are gradually—sometimes entirely—being
transformed as increasing sets of tasks are delegated
to a “smart assistant.”

Our job in software testing is also composed of many
tasks. From the nuances of requirements elaboration,
the back-and-forth in establishing “expected behavior,”
test case analysis, and the other numerous cogni-

tive tasks that we deal with, it’s a safe bet that our
jobs won’t be taken over by machines anytime soon.
However, for the reasons cited by Colvin, those of us in
the test industry would be wise to heed cross-industry
applications of analytics and machine learning and
begin staking out the proper role of the machine in our
testing domain.

Jason Arbon published a test autonomy maturity mod-
el, assigning a measure of an organization’s automation
capabilities. L0 (manual testing) is entirely in the mode
of manual testing. L1 (scripted testing) has a firmly
entrenched culture of scripting regression suites. L2
and above (exploratory bots, as well as human-direct-
ed, generative, and fully autonomous testing) are for
organizations that have started to move into the realm
of automating their cognitive and complex tasks.

For an L1 test organization well-versed in a world of
automation, whether it be scripting of regression tests
or the automation of build and deployment processes,
analytics and machine learning represent the next gen-
eration of automation. And although it’s just another
tool to be considered for our testing toolbox, it’s one
that opens up the possibility of automating tasks in
our job that we may never have imagined.

While many of the tasks across our diverse test practic-
es are similar, each of our jobs has unique challenges,

so priority will be determined by the specifics of our
organizational context. So your job, when the ma-
chines can do testing, is to figure out what tasks you
want them to do for you.

Whether your high-priority pain points include triaging
a bounty of automated test failures, avoiding wasted
effort researching a defect only to find it is a duplicate,
rapidly predicting the root cause of a failure, deciding
whether to automate or retire a test case, or increasing
regression test coverage in a time-constrained period,
there’s a good chance that employing a machine as
your smart assistant might be the next automation
approach for you to consider.

What’s Our Job When the Machines Do Testing?
By Geoff Meyer

17

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

http://fortune.com/2014/06/02/fortune-500-future/
https://www.popularmechanics.com/technology/robots/news/a28645/googles-alphabet-astro-teller-ai/
https://www.popularmechanics.com/technology/robots/news/a28645/googles-alphabet-astro-teller-ai/
http://fortune.com/2015/07/23/humans-are-underrated/
https://www.techwell.com/techwell-insights/2017/04/think-differently-about-future-software-testing
https://www.techwell.com/techwell-insights/2017/04/think-differently-about-future-software-testing
https://cio.economictimes.indiatimes.com/news/business-analytics/only-4-pc-of-cios-have-deployed-ai-despite-huge-interest-levels-in-ai-technologies/62900459
https://cio.economictimes.indiatimes.com/news/business-analytics/only-4-pc-of-cios-have-deployed-ai-despite-huge-interest-levels-in-ai-technologies/62900459

Agile code is at the heart of agile software develop-
ment. It’s not enough to embrace change in the re-
quirements process; you need to be able to deliver in-
cremental changes along the way, since agile methods
deal with uncertainty in the product space by enabling
stakeholders to inspect and adapt. Without working
code that can be delivered into production quickly, it’s
hard to inspect things in a meaningful way.

There are many elements to agile code. Designing with
patterns to allow for flexibility with minimal overhead
is essential, but not enough. You also need testing in
order to get feedback.

More testing isn’t always better testing, though. If your
tests are unreliable, they can cause more harm than
good. “Flaky tests” aren’t as rare as we’d like to think,

and there are a few things you can keep in mind to
avoid them and help your development lifecycle move
more smoothly.

Flaky tests are tests that fail intermittently, and whose
failures don’t really provide useful indications of sig-
nificant errors in the product code. Flaky tests could
be the result of issues in the code, but more often
they are the result of assumptions in the test code
that lead to non-relatable results. Common examples
are UI tests that rely on identifying elements based on
positions, or data-driven tests that make assumptions
about the initial state of the data without verifying it.

While integration tests are often the most likely to
exhibit flakiness, unit tests are not immune. Unit
tests based on time computations can fail on time
zone transitions, or if a legacy test is written with the
assumption of a future date that is fixed.

There are many reasons that tests can fail intermittent-
ly, and some can be easily avoided by applying good
defensive design strategies. Sometimes the problem
is that the test is too simple—for example, comparing
a response to an API call as a string, when you have
no control over order or even whitespace. Instead,
compare fields in a structured object, checking only for
the fields you expect.

Sometimes the issue is testing something irrelevant.
Comparing all the fields in a response rather than just
the ones that matter to the client that you are testing
can lead to test failures that don’t imply code failures.

Stateful integration tests can fail when you make as-
sumptions about the data that you can’t verify. Ideally,
you would start with a known external system state,
but if that’s not possible, consider structuring tests so
that the query can examine the current state, make a
change, and then examine the new state.

While one can argue that tests that provide more noise
than signal should just be skipped, that is not always
a good practice. Even very simple tests that provide
valuable insight can be flaky if not written well.

Test code is code, and it should be treated with the
same level of good design that you treat production
code. It should be adaptable and only make assump-
tions that it verifies. By making this a practice, you can
keep all of your code more agile.

Defensive Design Strategies to Prevent Flaky Tests
By Steve Berczuk

Flaky tests could be the
result of issues in the code,
but more often they are the
result of assumptions in
the test code that lead to
non-relatable results.

18

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

About Launchable

CONTACT LAUNCHABLE info@launchableinc.com | www.launchableinc.com

BLOGHOW LAUNCHABLE WORKS

WEBINARS YOUTUBE

19

e G U I D E Increasing Code Quality with Automation and Machine Learning

3
6 Steps for
Succeeding with
Test Automation
in Agile

6
How to Build a
Data-Driven
DevOps Decision
Making Culture

8
Dealing with a
Test Automation
Bottleneck

11
The Evolution of
DevOps Testing
Tools

13
How AI Is
Transforming
Software Testing

14
How to Deliver Code
Faster with Test
Automation Powered
by Machine Learning

17
What’s Our Job
When the Machines
Do Testing?

18
Defensive Design
Strategies to
Prevent Flaky Tests

19
About Launchable

C O P Y R I G H T 2 0 2 2

https://www.launchableinc.com/contact?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
mailto:info%40launchableinc.com?subject=
https://www.launchableinc.com/?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://www.launchableinc.com/blog?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://www.launchableinc.com/how-it-works?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://www.launchableinc.com/webinars?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia
https://www.youtube.com/channel/UCkm0BDxMVm7_glYXpKRKJ8Q/featured?utm_source=techwell&utm_medium=eguide&utm_campaign=dec_2021&utm_id=Q4paidmedia

