

Pivoting to

Codeless Test

Automation

By Matt Heusser for Subject7

At my company, Excelon Development, before we make a

recommendation, we usually do an analysis with the Six Boxes

Model. The boxes are performance factors, like incentives,

management expectations, tools and process. The analysis

includes determining if the people doing the work can do the

job (skills) or are capable of learning to do the job, which we

call capacity.

It's a tough lesson for some of us when we realize sometime

towards the end of high school, that we do not have the vision

required to be a fighter pilot, or the height to play professional

basketball; likewise, the assumption that everyone can learn to

code. I suppose most people that work in an office can learn

to code … badly. A thousand abandoned test automation

efforts tell me that we should at least consider whether our

staff has the capability, and more importantly, the interest in

writing software.

 Subject7, Inc. Copyright © 2022

http://www.subject-7.com/
https://www.sixboxes.com/Six-Boxes-Model.html
https://www.sixboxes.com/Six-Boxes-Model.html

Imagine a group of testers and analysts. They are happy. They understand

how they contribute to the process, documenting the system, finding

problems in the software before it is released, writing up bugs, perhaps

acting as second-line support. For their education and experience they are

compensated and respected well enough. Again: They are happy. You

might have people very much like this in your office.

Then a typical automation tool comes in. Now, in addition to doing the

testing and the analyzing, these people are expected to learn to code.

Actual programmers, of course, learn to code in about one-fourth of their

college courses -- about 30 Computer Sciences credits out of 120. But

that’s not this team, most of them took one course in programming,

a decade ago. The company now asks them to learn to code in their

spare time. The reason they need to learn to code, of course, is

because testing is falling behind.

This is not going to go well.

It can be done better or worse. Out of a larger group, perhaps
Thirty people, there might be three to five with the aptitude and
motivation to learn to code on their own. If their job is at risk, perhaps
ten or fifteen will be willing to try. At the end of the process, instead of
respected experts who understand their niche, you're left with people who
are coding a monstrosity beyond their skill, who are overworked, and now,
thanks to the magic of programming salaries -- feel underpaid.

Let's flip the script and talk about what it takes to be successful with

adaptive, low or, codeless solutions.

Subject7, Inc. Copyright © 2022

WHERE YOU START

Every responsible article about testing tooling talks about getting the right people on the bus, on

building the right team. Some even go so far as to suggest that you consider if the people you have

(and the ones you have budget for) will match the test approach you are considering.

Today, I will go a little further than that, and talk about

the skills that matter for a codeless approach to testing.

Subject7, Inc. Copyright © 2022

There is a certain kind of magic to working in this way, because

it connects two things: requirements and automated testing.

Before the feature is coded, there are requirements that express

what the software should do, then the automated tests

demonstrate the software can do it, at least under some

conditions. You can think of requirements and tests as

bookends to the project, with the code in the middle. Writing test

code can certainly work; I spent three years of my life at

Socialtext working in Selenium every single day. What we didn't

have at Socialtext is that bookend process. When I worked with

analysts who stuck around to help with the acceptance testing

thy didn't need to have an argument when the software didn’t do

what someone expected; they knew. They wrote the

requirements. They were ones who did the expecting.

Donald Knuth is known for pioneering, if not inventing, what we call computer science today. He talks

about the skills programmers need in his book Things a Computer Scientist Rarely Talks About,

including the ability to jump up and down many layers of abstraction. In code, that might be from a high

level architecture, to a class, a method, and even the substance of the packets going over the internet

- and back. According to Knuth, the mathematician looks for a single unifying truth, while the computer

scientist can simply code differences with "if" statements.

Low and codeless frameworks don't typically have those layers of abstraction that

programmers work with. Instead of doing many things, perhaps randomly,

jumping around the screen, low and codeless frameworks do the same thing, over

and over again. Click, Click, Click, Type, Click, Inspect, Compare -- that might be a

simple tool-assisted test. Instead, a test automator using a simple tool-assisted-

test needs to be able to create the test, look at it, understand that it matches the

expected user behavior. They need to look at it and say, "Yes, this is what the user

will do, and what they expect to see."

These kinds of tools might have an "if" statement, or a “for” loop. They might have

a small amount of code, perhaps to calculate when a product will arrive, knowing it must be within five

business days. This kind of tool jockey might need to go into a web browser and grab an image, or look

in developer tools, or figure out the string that will locate a button so the tool can click it. None of this

involves the kind of three dimensional chess skills that programmers need to have, keeping multiple

variables in their mind at multiple levels.

A DIFFERENT WORLD

https://www.amazon.com/Things-Computer-Scientist-Rarely-Lecture/dp/157586326X

Subject7, Inc. Copyright © 2022

When I talk to people about software testing, they often fail to consider test design as an important

skill. It is amazing. The assumption is that anyone can do testing. Then, when bugs slip through, we

ask "Why didn't QA find that bug?" especially when the company offers no training on test design and

assumes anyone can do it!

Experienced testers, the kind that find the important bugs, have learned test design. They likely

understand what the user will do (mental modeling) and understand the history of what tends to break

(regressions) and the kind of features that tend to “show up broken” for testing in the first place.

These are important skills, but they only show up when the tester understands that one part of the

role is exploring the software, and the other part is creating tooling.

In my experience, when testers are pushed to do

“100% automation”, they often stop exploring

and spend all their time automating.

THE UNDISCOVERED COUNTRY

https://searchsoftwarequality.techtarget.com/tip/5-ways-to-answer-executives-unfair-software-test-QA-questions

Codeless tools can enable the bookend effect I discussed before. The

"manual testers" can be more like subject matter experts who

understand what the customer is trying to do, yet still produce

working automation that runs. Designed well, with an eye toward test

design, the automation can create an ever-increasing amount of

coverage without significant maintenance effort. In other words, with

codeless tools, it can be possible to have your pie and eat it too -- if

the tool will truly work for you.

Before you jump into a test automation tool, take a hard look at the

staff you have. Consider if the tool will marginalize their skills, force

them to learn new skills, or augment the skills the testers already

have. Is it going to create cyborg testers, who have cybernetic vision,

hearing, and strength -- or is it going to put a mountain in front of them

to climb. There are, of course, plenty of companies that have created

a "new vision" of the future, with generous severance packages for

testers that didn't want to learn to code. Some of them report great

success. All of them report watching decades (or centuries) of

experience walk out of the building, never to return.

If you have a group of testing experts that you would like to keep, and

you would rather not create a technical test-automation-team, then

you may be looking for a low-code solution where the automation

"pops out" of the process at the end. That is, the testers have to test,

and in the course of their work they need to run through the very same

scenarios that could be automated. Why not use a codeless tool that

can use the work that they already do to create automation, but with

essentially codeless required?

The main objection is that codeless tools don't always work. You have

version control issues and multi-user issues and object recognition

issues and a host of other problems. Suddenly, the list of workable

codeless solutions may not be as long.

Subject7, Inc. Copyright © 2022

Still, I would submit, Subject7 would be on that list.

Take a look.

https://www.subject-7.com/
https://www.subject-7.com/

