
Testing in
DevOps

eGuide

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

2C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

In order to fully realize the potential of DevOps and a team’s ability to deliver higher-quality software faster and more securely, testing
must be done continuously throughout the software development lifecycle. But continuous testing isn’t just about automation and tools;
there are cultural and process shifts that must happen, and everyone must be on the same page. This eGuide collects methodologies,
processes, and tips to help your organization venture into continuous testing in DevOps.

Why Software Testing Is Key to DevOps
One of the major reasons organizations adopt DevOps practices is to accelerate
delivery of software to production. However, many fail to include quality compo-
nents in their practices. Continuous deployment without quality is just delivering
continuous bugs. Here’s why software testing is an essential part of DevOps.

Test Everywhere: A Journey into DevOps and
Continuous Testing
A move to DevOps creates an opportunity to shift the testing process to the
left. But what if you went further? DevOps supports continuous testing, so you
can advocate for a constant focus on quality, with testing permeating the entire
software development process. Here’s how you can actually have a faster testing
process when the software is tested throughout the lifecycle, by developers,
testers, and automation alike.

Shifting Your Testing: When to Switch Gears
Shifting your testing either left or right can meet different needs and improve
different aspects. How do you know whether to make a change? Let your test cy-
cles be your guide. Just like when driving a car with a manual transmission, if the
engine starts to whine or you’re afraid you’re about to stall out, switching gears
may be just what you need.

Continuous Testing, Shifting Left, and Test
Automation: Getting It Straight
Continuous testing can help you achieve the optimal balance between speed and
risk and deliver high-quality products faster. But what exactly does continuous
testing entail? Is it just shifting testing left in a DevOps environment? And where
does automation fit in? Here’s a breakdown of all these testing concepts.

Demystifying DevOps: A Day in the Life of a DevOps
Tester
The idea of working as a test specialist on a team using DevOps can be intimidat-
ing. There are at least two technology stacks, containerization and continuous
integration, that you need to be familiar with. But few people need to be able to
start from scratch. Here’s what a normal day of testing in DevOps looks like.

Why You Need Continuous Testing in DevOps
DevOps is more than adopting the right set of tools; it’s a cultural shift that
incorporates testing at each stage of the agile project lifecycle. Continuous test-
ing is key to unlocking this culture change because it weaves testing activities
into every part of the software design, development, and deployment process-
es, which helps everyone involved communicate more, collaborate better, and
innovate faster.

Continuous Delivery Is Not a Pipeline
Pretty much everything you hear about DevOps mentions “the pipeline.” Con-
tinuous delivery is not really about the pipeline, however. Continuous delivery is
about two things: testing strategy and branching strategy. The pipeline is import-
ant; it is an integral part of DevOps. However, the central element is the practice
of testing continually using automated tests.

5 Key Factors to Achieve Agile Testing in DevOps
Part of the path to DevOps requires adoption of agile methodologies. What does
it mean for testing when you switch from the traditional waterfall model, with
a few long release cycles per year, to the agile model, with changes occurring
every two weeks? Here are five key factors to achieve the agile software testing
necessary in DevOps.

Key Enablers for Continuous Testing
Continuous testing means testing before, during, and after each software change
is made. Testers have long advocated for this, but DevOps has made it more pop-
ular by pushing for rapid feedback and shifting testing left in the lifecycle. Here
are three practices your company should embrace to enable continuous testing.

Insight from the Industry

Additional Resources

In this Testing in DevOps eGuide

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

3C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

One of the major reasons organizations adopt DevOps prac-
tices is to accelerate delivery of software to production. This
includes deploying more frequently and reducing lead time.

However, many organizations fail to include quality compo-
nents in their practices. This leads to organizations deliv-
ering code faster, but unfortunately, that code is just poor.
Continuous deployment without quality is just delivering
continuous bugs to your customers.

If this sounds like your organization, software testing may
be the missing component to your DevOps program. Top
performing DevOps organizations, like Netflix, Amazon, and
Etsy, utilize automated regression, performance, load, and
security testing to ensure software quality is built into their
DevOps pipelines and ensured by being forced to be run on
every build. For Netflix, this allows software to be commit-
ted, tested, and fully deployed to production within sixteen minutes!

If your organization isn’t as large or doesn’t require as rapid de-
ployments as those companies, automated testing in your DevOps
pipelines still provides significant benefits. Even a small amount of
automated regression testing can ensure basic tests are always run
on a build. Typically, organizations start by building an automated
smoke test. This smoke test provides a sanity check on a developer’s
code. This can not only reduce some of the overall manual testing
effort by the testing team, but also ensure effort isn’t being expend-
ed on builds that don’t meet minimal quality standards.

More robust automated testing suites can result in even less man-
ual testing, in addition to better-focused exploratory testing efforts

into high-risk areas of the application, including interfac-
es, misuse cases, and the most important assets to your
system. While not every test can (or should) be automated,
spend your critical resources wisely by only focusing manual
efforts on the things that really require their attention.

Most organizations today use some level of automation when
looking at performance, load, and security. Leveraging those
existing capabilities into your DevOps pipelines ensures that
your deployments are not held back by independent groups
late in the software lifecycle and they aren’t an afterthought
when the application is already in production. This has im-
mediate benefits, such as reducing cyber security impacts on
your applications and their data by ensuring critical vulner-
abilities are identified earlier in your software development
lifecycle and aren’t deployed to production in error.

Pulling software testing into your DevOps practices doesn’t have to
be difficult. You can start by bringing your existing testers and secu-
rity engineers into your planning sessions. Next, ensure each phase
of your pipeline has a quality gate and software quality criteria that
should be met in order to move to the next phase of your pipeline.
Last, identify gaps between your quality goals and reality, and en-
sure you prioritize efforts into the activities that provide the greatest
return on investment—those that are either run with the highest
frequency, reduce the greatest software quality risk, or reduce the
biggest bottlenecks.

These simple steps will lead to not just delivering code faster, but
delivering better code faster.

Why Software Testing Is Key to DevOps
By Alan Crouch

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

4C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

In over ten years of leading the test and quality assurance process-
es for companies that did not have formal testing, one thing I have
noticed is how difficult it is to persuade many developers and their
managers that quality assurance standards and practices exist,
and that the company would benefit from using these latest tools
and methods.

It’s a constant challenge to remove the concept that testing is a fi-
nancial drain and time bottleneck that is a threat to product delivery.
My counterargument has always been that post-release bug fixes
from poorly tested (or even untested) software are more expensive
and damaging to the company reputation, and properly planned and
executed testing processes do not cause delays or excess costs.

Most of the developers at my new company had never worked with
a full-time tester and had no knowledge of any software testing
processes. “Testing” involved another developer on the team briefly
looking at newly developed features before pronouncing them
satisfactory for release to the client. Test plans, cases, reports, or any
written test artifacts did not exist.

The reason for bringing me on as an independent QA person was
to allow developers to concentrate on coding. Many developers
had the impression that I was there to quickly review new websites
and features before deployment to production. The initial idea the
project managers and developers had for testing was to give me a
few hours “to check if anything’s broken” before giving the software
to the client.

Although a step in the right direction, creating any test documen-
tation was a gamble because the company had multiple teams that
were simultaneously working on several projects, so it was difficult
to predict the completion status of any software because of sudden
and often undocumented changes. My pleas to be included earlier in
the development process and develop automated regression suites
were regarded as a good idea, but in practice they never proceeded
beyond that point.

My presence in the company did improve software quality, but the
“over the wall” philosophy still prevalent at the time did prevent
more significant quality improvements. Luckily, new additions to the
company and a switch to DevOps created an opportunity to shift the
testing process far to the left.

Test Everywhere: A Journey into
DevOps and Continuous Testing
By Anastasios Daskalopoulos

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

5C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

So now I’m embarking on a new endeavor: introducing my com-
pany’s teams of talented developers to the concept of continuous
testing and implementing it within the DevOps framework.

Planning for Quality
A fortunate convergence of a newly created DevOps team and
newly hired lead developers were the main catalyst for a shift in our
thinking about who was responsible for quality, at what point quality
would be a concern, and what practices would be used to ensure
quality from the inception of any project.

As the quality assurance specialist, I was tasked by the new DevOps
team and new lead developers with helping to create a process for
testing at each stage of development. My goal was to have testing
and development work in parallel and act in conjunction for their
mutual benefit.

Instead of the usual practice of banging out the code for a list of
features for every sprint, a prioritized list of features is recorded in
descending order in a TESTME.md file, a short, markdown-language
file that uses the Gherkin syntax. This list focuses both the developer
and tester on the simultaneous coding and test creation for each
feature by importance.

At this point, my job as the QA specialist is to concentrate on writing
the project’s test strategy, the sprint test plan (usually no more than
two pages long), functional test cases, and test results.

Unit and Integration Tests
Instead of developers relegating the task of “checking to see if
anything’s broken” to the tester, very early in the project they now
prioritize the features within sprints, practice test-driven and behav-
ior-driven development, and verify the functionality with unit testing
and behavior-driven test automation frameworks.

Although not a written policy, many developers have seen the ad-
vantage of test-driven development and, on their own, have begun
to create unit tests and write the code for the tests to pass.

The same is true for integration tests. The developers do not have a
hard-dividing line on what defines a unit test versus an integration
test; they generally agree to just write a test and define it as an inte-
gration test for organizational purposes if it involves the interaction
between two independent classes.

After executing unit and integration tests, the developer now moves
on to API tests, which are done using an automated tool, depending
on the project.

Functional Tests
By this point I’ve taken the time and opportunity to review the
creative briefs, requirements, and design documents, as well as
the TESTME.md list of prioritized features. Each sprint has also
been planned and features for development and testing have been
defined, giving me time to create tests for the sprint. I subject the
tests to informal review to get more ideas about test priorities,
general tips, and what to test in detail. This is an example of devel-
opment and testing being done in parallel for the mutual benefit of
each process.

Post-release bug fixes
from poorly tested (or
even untested) software
are more expensive
and damaging to the
company reputation.

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

6C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

I also create end-to-end tests, such as for a user logging into a site,
searching for a product and adding it to the cart, then going through
the purchase process, or for searching through a large document
library for a specific document and then downloading it. I review and
execute the tests to gauge how well the newly developed features
work with the existing features.

The test results are collected and made available as screenshots to
everyone in the project, as well as to the client. An important point in
testing is transparency, and value is added to the project when weak
points and unstable areas have been found and fixed. The purpose
of test results is to show initial unstable areas that have been fixed,
what kind of issues were found, and that the issues no longer exist in
the applications under test.

Regression Test Suite
Once it is confirmed that the functional tests have passed, I create
a regression set automated with a behavior-driven test tool. Experi-
ence has shown that software features that have previously passed
and function reliably in production can fail after the inclusion of new
software features, so tests that go into our automated regression
sets confirm that features that previously passed in both manual and
automated functional sets still pass. For example, passing manual
and automated functional tests for a document library search will go
into a regression set to verify that the search still passes.

At this point, all tests can be executed in the pipeline.

The Changing Face of QA
One observation I have made is that throughout this process, my
place as the QA specialist has changed. The initial role was at the bot-
tom rung of the development process, where testing simply “checks
if anything is broken,” and now I’m floating above the process to
verify that the correct quality processes are done by development.

Even in DevOps, testers should create and execute manual tests.
Behavior-driven tests early in the process cannot catch all bugs by
automation, since the stress is on feature behavior.

At my company, a
focus on software
quality now perme-
ates every project.
The changes we
enacted have shown
that we have a faster
testing process when
the software is tested
throughout the de-
velopment lifecycle,
by developers, testers, and automation alike. DevOps requires con-
tinuous testing, so we need a constant focus on quality.

We have a faster testing process when the software is
tested throughout the development lifecycle, by developers,
testers, and automation alike. DevOps requires continuous
testing, so we need a constant focus on quality.

AQ

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

7C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

Everyone keeps talking about shifting testing left. A few weeks ago,
it was shifting right. But where are you now?

Before you shift your testing practices, it’s important to evaluate
your current position. Let’s look at the benefits of shifting either left
or right, including what needs can be met and what can be improved
by shifting.

It can be helpful to have a visual, so let’s use something already
associated with shifting: a car’s gearbox! As we’re talking about
testing, imagine the set of gears below.

The Middle: Third Gear
This is the current situation for most companies. In development,
only basic and technical checks are made. You have a dedicated test-
ing system where your quality checks are done. In general, develop-
ers develop and do the technical stuff, and testers check the func-
tions at different levels and in combination with other applications.

Apps are packaged so that the connections between them are
dedicated to their individual functions and possibilities. This setup
is rather static and requires much effort in maintenance and knowl-
edge of each product, technology, and workflow. Every application is
dedicated to a certain team, developer, or company, and those peo-
ple take care about it. If you suffer a problem, you have to ask this
one guy, and if he is not available, you are stuck. Information stored
in human silos decreases your time to market significantly.

I worked with a bank that employed this setup. They had dedicat-
ed systems with straightforward testing in every stage. Test cases
where done for dev or test systems, and real production problems
needed to be recreated in test to reproduce them.

Problems included a long time to market, inconsistent test data
through the systems, differences between the environment of each
system and stage, and some errors occurring only when certain sys-
tems where connected. Most of the time testing went into the setup
and then tried to align all systems and imagine them as they would
run in production.

Shifting Your Testing: When to
Switch Gears
By Maximilian Bauer

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

8C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

A database of test data that could just be imported was a help, be-
cause users and accounts could be created on the fly with any date
on them; otherwise, testing would have taken ages. But is there a
better way?

Shifting Left: First Gear
Why do we test so late in our development lifecycle? If we manage
to find bugs earlier, we can solve them more easily, not to mention
more inexpensively. So let’s shift testing left along the software de-
velopment timeline, moving it into the dev environment.

This is possible because there was a shift in setup, too. Systems have
migrated to the cloud, and testers have moved away from dedicat-
ed connections for every application to an API. In an environment
controlled by an API layer, every app calls a function over a service,
either a generic or dedicated one, enabling earlier testing. Checks
are done over the services. Data is passed through a request and is
received by the response. If a system is not available, service virtual-
ization makes it reachable.

Service virtualization is just a way of mocking any kind of connected
system, letting testers play around with it. The simulation can even
be done with complex environments, and people can get training
and practice like in the released setup, with much less risk. Data
streams are recorded and will be replayed once needed. Service calls
are made to the API layer and the virtualized service answers the
same way a productive system would do. The application is part of
the whole environment, and a huge landscape is covered already in
development.

A module-based testing approach also changes the game. Devel-
opers create modules that are used later by testers. Just think of
different perspectives on the system under test: Dev only looks at
their part, while testers look at the combination of systems and see
the bigger picture throughout the system landscape. Reusing some
of the artifacts would create a new way of creating process chains or
can be used for extending the simulation, which is just changing the

start and end. Developers can define connection details like users,
passwords, endpoints, and security up front, and testers just take
it for the test environment. (Yes, just a test environment. It is not
meant to be a dedicated testing area without virtualization, where
the systems really interact with each other.)

Test data and variants of all tests can be shared between dev and
test, so a useful test can be run in dev already, always depending
on the importance and the recorded data flow. Multiple people can
share knowledge about the steering. The service call can be very
generic and is highly dependent on the data provided. This means
finding bugs earlier, which results in less testing effort in further
stages and shortens your time to market.

I also worked with a credit card company in the process of shifting
their testing left in this manner. They had managed already to get
rid of the static staging and move to APIs, and even though they
were not generic enough and still more specific to a certain function
at this point, they still detected many errors early. They had a ded-
icated testing team just focusing on the API layer and checking the
connection between it and the applications. Testers created modules
with developers, representing the requests and responses. The same
modules also could be reused in testing with different connection

Before you shift
your testing
practices, it’s
important to
evaluate your
current position.

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

9C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

parameters, which saved a huge amount of time because everything
was predefined, and the dev team knew what parameters the testers
needed in case of any change. Big issues and data inconsistency
were already checked in the dev environment and could be solved
up front in the deployment to test.

They had just started to mock apps with service virtualization, but
for the one they had done already, the developers told me how far
their checks can go now because of the application behavior, which
decreased maintenance and testing time later on.

Shifting Right: Fifth Gear
This method is special because we kind of mix it up and try to get
the best of both worlds. We increase our testers significantly, but
our time to market needs to be very short—because testing is in
production.

One of the best examples for shifting testing right is Amazon. Their
customers and users of their product are the testers. Operations are
highly integrated and get more significance in QA. This works best
if you have already gone through shifting your testing left and have
just one big product that moves through an automated build.

To ensure testing in production works, more effort is needed than
in the other gears. Testing processes have to be defined close to
perfectly and all work should be automated, favoring the API layer.
Whatever you forget to check will be present in production, so an
area that wasn’t covered in test could lead to real damage. Your
product should already be super stable and maybe not have too
many things connected—or at least everything should be tested with
above 90 percent risk coverage—or else operations would not be
capable of doing a deployment.

Every part should be handled independently. One deployment to
production should consist of small bits and pieces, because this
ensures better test coverage. Huge features can cause more side ef-
fects than expected, so you want to have them included in your tests
as early as possible. The final test itself will be handled through the
users, and their feedback will provide you with the bugs.

Nevertheless, it is required to have a fully implemented continuous
integration QA pipeline, which will be triggered during the build.
Most of the tests happen automatically within the CI tool and the
build is only done if tests are green. Ops will take care of the delivery
pipeline, so testers need to create and maintain tests and check the

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

10C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

results. In the best case, testers should be able to recognize false
positives and assess the need for test or dev involvement.

If you walked through the whole gearbox, you should gain an
advantage from the first gear. The API modules from dev could be
reused here, and maintenance on a technical level is just done once.
The final execution state is based on feedback. There is no need any
more for go-live discussions after your tests; it’s more about getting
emails from upset customers.

It is a good option to increase user acceptance and make features
based on user experience, but your product needs to be at a certain
level to go for it. If your change does not affect too much of your
business risk—meaning if both damage in case of failure and fre-
quency of using it are low—you can easily trust your gear. In every
other case, try to be sure that all tests cover as much as possible and
all side effects are detected. The higher your identification and test
coverage are, the higher the trust in your pipeline and your setup for
delivering your product quickly and securely.

I’m currently setting up this process for a client that’s a mobile
provider. They have their application ready and are just adding
features on features, so smaller parts. Every third-party application is

virtualized and the connection runs through APIs. Every build passes
through a CI pipeline and is checked on the dev side up front with
automated API and JUnit tests.

If this is fine, it’s moved automatically to a dedicated test environ-
ment. There, a CI tool reimagines the machines, and the solution, in-
cluding environment and testing tool, is built. Once done, automated
functional tests are run using UI, API, and real devices. If all tests are
green, the build will be passed to production and built there, without
any manual input. This requires trust in the systems and applica-
tions, but it saves time and money.

Changes in tests happen through all stages just by maintaining a
single object. One test is created and affects multiple environments,
thanks to prebuilt modules. The biggest challenge here is the align-
ment in the virtualization of the different stages. During test case
creation, we introduced a staging and used the “four eyes” principle
to check that everything was tested and covered.

Don’t Be Afraid to Switch Gears
Every environment is dependent on many factors, including appli-
cation, team, and infrastructure setup. Different testing strategies
and approaches can be used for different stages, and if your process
moves you to a different stage—or if you think a different stage
could serve you better—then shift in that direction.

Every shift is a process, not a moment; your journey will create the
moments for you. Don’t hesitate to shift your testing through the
different phases of the software lifecycle if you think it will benefit
your processes more. And don’t let the idea of a having to create
an entirely new test plan hold you back: Test reusability is high, and
something defined in the third gear may save you time and money
in the fifth.

Let your test cycles be your guide. Just like when driving a car with a
manual transmission, if the engine starts to whine or you’re afraid
you’re about to stall out, shifting gears may be just what you need.

Different testing strategies
and approaches can be
used for different stages,
and if your process moves
you to a different stage,
then shift in that direction.

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

11C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

Today’s executives face relentless pressure to deliver innovative
software faster than competitors. Digital transformation has elevat-
ed software delivery to a C-level conversation, and software testing
must be included in that conversation.

On one hand, testing is all too often the roadblock that stands
between highly accelerated dev processes and highly automated
ops-driven delivery processes. But on the other hand, testing is
essential for ensuring that the release doesn’t place the business at
risk—undermining the very customer experience that digital trans-
formation is dedicating to enhancing.

How can you achieve the optimal balance between speed and risk to
deliver engaging customer experiences faster than competitors?

This is where continuous testing comes in.

Continuous testing is the process of executing automated tests as
part of the software delivery pipeline in order to obtain feedback on
the business risks associated with a software release as rapidly as
possible. It really boils down to providing the right feedback to the
right stakeholder at the right time.

For decades, testing was traditionally deferred until the end of the
cycle. At that point, testers would provide all sorts of important
feedback … but nobody really wanted to hear it then. It was too
late, and there was little the team could feasibly do except delay the
release. With continuous testing, the focus is on providing actionable
feedback to people who really care about it, at a time when they are
truly prepared to act on it.

At some point the concept of continuous testing was inappropriately
conflated with the “shift left” trend. But to deliver the right feed-
back to the right stakeholder at the right time, continuous testing
needs to occur throughout the software delivery lifecycle—and even
beyond that to production, like monitoring information from produc-
tion and feeding that back into the quality perspective.

Just as the name indicates, continuous testing involves testing con-
tinuously. Simply starting and finishing testing earlier is not the goal.

So where does test automation fit in? It’s essential for continuous
testing, but it’s not sufficient.

Test automation is designed to produce a set of pass/fail data points
correlated to user stories or application requirements. Continuous
testing, on the other hand, focuses on business risk and providing
insight into whether the software can be released. Beyond test au-
tomation, continuous testing also involves practices such as aligning
testing with your business risk, applying service virtualization and
stateful test data management to stabilize testing for continuous in-
tegration, and performing exploratory testing to expose “big-block”
issues early in each iteration.

When it comes to digital transformation, it’s not simply a matter
of more tools or different tools. It requires a deeper change across
people and processes as well as technologies.

Continuous Testing, Shifting Left, and
Test Automation: Getting It Straight
By Wayne Ariola

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

12C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

The idea of working as a test specialist on a team using DevOps can
feel intimidating. There are at least two technology stacks, container-
ization and continuous integration, that you need to be familiar with.
Add a source code repository like Git, a few test frameworks, and a
scripting language to bundle everything together, and you start to
approach a useful skill set.

My experience has been that very few people need to be able to
start from scratch. Here is what a normal day of testing in DevOps
looks like for me.

My current team follows pairing and Extreme Programming prac-
tices. For every code change, there are two developers and one test
specialist. Most of the time, we start a change request by building
a new test. This might be in RSpec or through Cucumber. Either a
developer or a test specialist will write the test, and then a developer
will write code to make that test pass. This helps us to understand
the code we are writing, to refactor with less worry, and to know
when we are done.

Throughout this red, green, refactor process, we are building new
environments locally. One of us will push a change, and I might pull
those changes and build a local environment.

The containers come in when we are closer to a usable version of the
change. Many of the DevOps stories I read involve using commands
I can never remember in workflows that feel archaic. I am able to do
everything through our continuous integration system.

First I use a drop list to select the branch I want to use to build a new
container. Building the container takes about five minutes. After my
container is built, I select which environment to deploy to. After a
few more minutes, I have a production-like environment available
to explore and perform test ideas that are more complex than the
programmatic testing we do during the development flow.

Pairing and having a test specialist removes most of the easy-to-find
bugs that normal development leaves for the testing role. Generally
I will still find problems related to the unpredictable way customers
can use the product. I demo these bugs, then we make a decision as
a group about whether they matter. Deciding to make a fix puts us
back in the red, green, refactor cycle.

Over the course of a feature change, I might make one container, or
I might make several. But it is very easy, taking somewhere around
seven minutes each time I need to create a new environment from
scratch. Once we feel like we are in a deliverable state, we create
one last container environment in a branch merged with the head
branch and demo to our product owner. That demo includes a dis-
cussion of any lingering things we decided not to fix so we can get
some fresh perspective on them.

Testing in DevOps can feel scary, but like most things, once you get
in a day-to-day groove, it becomes an indispensable part of your
workflow.

Demystifying DevOps: A Day in the
Life of a DevOps Tester
By Justin Rohrman

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

13C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

The agile process is all about using short, flexible development
cycles to respond quickly to customer needs. Doing this effectively
these days involves building a DevOps software pipeline in order to
quickly get high-quality software into the hands of your customers
and receive feedback.

Most DevOps initiatives start with the adoption of continuous
integration (CI) practices, where code is continuously integrated
to make sure everything works together. Developers start the CI
process by checking code into a shared repository many times a day.
Each check-in is verified by an automated build process and some
fast-running tests, allowing teams to detect errors and conflicts as
soon as possible. Regression tests are run at least each night to
make sure any changes made during the day did not break some-
thing else.

After CI is performed, a continuous delivery process is followed,
where the application is further tested and, once it passes all the
required tests, it’s available to release into production. The upside of
continuous deployment is that it delivers new functionality to users
within minutes, as well as instant feedback to the team that allows
rapid response to customer demands. Effective testing during your
continuous deployment process is critical because without it, there is
a big risk of continuously releasing buggy software into production.

Don’t Let Testing Practices Slow You Down
Continuous testing, which is often called shift-left testing, is an
approach to software and system testing in which testing is per-
formed earlier in the software lifecycle. The goals are finding defects

earlier, increasing software quality, shortening long test cycles, and
reducing the possibility of software defects making their way into
production code during deployments. Continuous testing is critically
important if your company is trying to use DevOps to deploy soft-
ware frequently into production.

Done right, continuous testing provides fast and continuous insight
into the health of the latest build of your application. This informa-
tion can then be used to determine if the app is ready to progress
through the delivery pipeline at any given time. Because testing be-
gins early and is executed continuously, bugs are exposed soon after
they are introduced, which reduces the time and effort needed to
find and fix them. Consequently, it is possible to increase the speed
and frequency at which bug-free, high-quality software is delivered,
as well as decrease technical debt.

Technical debt refers to the price organizations pay when releasing
badly designed code. It’s a way of calculating the cost of additional
rework caused by choosing an easy and quick solution now instead of
using a better, less buggy approach that would take longer. Just like
financial debt, technical debt incurs interest that must be paid, such

Why You Need Continuous Testing
in DevOps
By Tom Alexander

Done right, continuous testing
provides fast and continuous
insight into the health of the
latest build of your application.

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

14C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

as increased maintenance, support, or legal costs. By shortening the
time it takes to fix buggy software, continuous testing helps pay down
your technical debt by keeping these interest costs from accruing.

DevOps is a cultural shift that promotes collaboration among all
teams, including development, quality assurance, operations, and
others, such as performance management, release management,
and maintenance teams. Consequently, there is no single product
that can be considered the definitive DevOps tool. Often, a collection
of tools from a variety of vendors is used in the stages of a DevOps
process. Continuous integration is often seen as the backbone of
a continuous delivery pipeline, which explains the popularity of CI
tools such as Jenkins and Bamboo to build, test, and deploy applica-
tions automatically when requirements change.

Companies using DevOps often ship new software into production
hundreds of times every day. These companies are delivering small-
er pieces of software, collaborating, and monitoring in production
to create a continuous flow of code, from check-in to production.
And they’re using continuous testing technology to weave testing
activities into every part of their software design, development, and
deployment processes.

Let Tech Do the Heavy Lifting
To release high-quality code faster, your organization needs to let
tech do the heavy lifting by adopting next-generation tools and
practices that enable you to test early, often, automatically, and
continuously.

By executing the right set of tests at the right stage of the delivery
pipeline—without creating a bottleneck—these tools enforce agile
principles by providing appropriate feedback at every stage of the
process. This enhanced communication averts duplication of efforts
and increases alignment among dev, ops, and testing teams, which
will allow you to deliver software on tighter schedules.

But these streamlined schedules are only possible if test automation
is seamlessly integrated into your software delivery pipeline and
DevOps toolchain. Test automation works by running a large num-
ber of tests repeatedly to make sure an application doesn’t break
whenever new changes are introduced. Manual testers are often still
involved in DevOps projects, performing testing while an automation
test suite is constantly running—but their role needs to shift toward
a session-based exploratory testing approach, focused on areas with
the most risk or where automation is not effective.

http://techwell.com
https://techbeacon.com/10-companies-killing-it-devops

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

15C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

The image above shows an example DevOps pipeline that incorpo-
rates continuous testing during check-ins, continuous integration,
and continuous delivery.

A Continuous Testing DevOps Toolchain
While not an exhaustive list of all available DevOps products, here’s
a checklist of tools that together make up a viable continuous testing
DevOps toolchain.

Planning Tools
If you’re looking for a tool that makes it easy for different teams to
collaborate, Jira is an agile project management tool that supports
any agile methodology, be it Scrum, kanban, or your own unique

flavor. From agile dashboards to reports, you can plan, track, and
manage all your agile software development projects. Jira’s wide
range of integrations also helps you connect to almost any other
tool you’re likely to need.

Dev Tools: Desktop or Cloud-based IDEs
While Eclipse and Visual Studio are the most popular desktop IDEs,
Cloud9, developed by Amazon Web Services, and JSFiddle lead in the
cloud.

Version Control Systems (VCS)
There are several web-based hosting services for DevOps version
control, including Microsoft’s GitHub, Atlassian’s Bitbucket, and

http://techwell.com
http://www.techcentral.ie/visual-studio-eclipse-remain-popular-ides/

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

16C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

the open source GitLab service. All work within standard desktop
or cloud IDEs to ease the processes of source code check-in and
checkout.

Build Tools
Jenkins is a CI/CD server that builds applications, runs tests automat-
ically, and pushes code through your DevOps pipeline every time a
developer checks new code into the source repository. Because of
the rich ecosystem of plugins, Jenkins can be used to build, deploy,
and automate almost any software project.

Bamboo is a CI/CD server from Atlassian. Like Jenkins and other
CI/CD servers, Bamboo allows developers to automatically build,
integrate, test, and deploy source code. Bamboo is a commercial
software that is integrated and supported out of the box with other
Atlassian products, such as Jira for project management and Hipchat
for team communication.

Automated Testing Tools
Cucumber is a tool for specifying application features and user sce-
narios in plain text. Cucumber runs automated acceptance tests writ-
ten in a behavior-driven development (BDD) style that encourages
collaboration on software projects by writing test cases in a natural
language that nonprogrammers and domain experts can read.
Selenium is a suite of different open source software tools that en-
able automated testing of web applications across various browsers
and platforms. Most often used to create robust, browser-based
regression automation suites and tests, Selenium, like Jenkins, has
a rich repository of open source tools that are useful for different
kinds of automation problems.

Agile teams can execute one-touch control of test automation from
within the Zephyr platform with Vortex, Zephyr’s advanced add-
on that allows you to integrate with a growing suite of automated
testing frameworks (including eggPlant, Cucumber, Selenium, UFT,
and Tricentis) with minimal configuration. Besides being able to

control the execution of thousands of automated test cases, Vortex
makes it easy to automatically create test cases from test scripts
and to apply insights from analytics on both automated and manual
testing activities.

Session-Based Exploratory Testing
PractiTest is a test management system that supports session-based
exploratory testing practices. Session-based exploratory tests are
created and added to a test set during testing. These tests can be
combined with other types of tests, including structured manual and
automated, to maintain test suites, traceability, and test coverage.

Capture for Jira helps testers on agile projects create and record
exploratory and collaborative testing sessions, which are useful for
planning, executing, and tracking manual or exploratory testing.
Session-based test management, a type of structured exploratory
testing, is an extremely powerful way of optimizing test coverage
without incurring the costs associated with writing and maintaining
test cases. Like Zephyr for Jira, Capture for Jira has a deep integra-
tion with the Jira platform, allowing users to capture screenshots
within browsers, record screens in Chrome, create annotations, and
validate application functionality within Jira.

Deployment Tools
Longtime “movers and shakers” in the DevOps infrastruc-
ture-as-code space, Chef and Puppet are both automated configu-
ration management and orchestration tools used to quickly spin up
compute and storage instances on demand.

Test Continuously to Deliver Faster
DevOps is more than adopting the right set of tools; it’s a cultural
shift that incorporates testing at each stage of the agile project
lifecycle. Continuous testing is key to unlocking this culture change
because it helps everyone involved communicate more, collaborate
better, and innovate faster.

http://techwell.com
http://www.satisfice.com/sbtm/

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

17C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

“We have pipelines.” That is what I always hear when working with
organizations that claim to use DevOps and continuous delivery
methods.

The claim resonates because pretty much every article you read
about DevOps mentions “the pipeline.” Graphic depictions of
DevOps and continuous delivery almost always are a pipeline of
some kind, showing a flow of software from development through
various stages of testing and finally to release.

Continuous delivery is not really about the pipeline, however. In
fact, in one instance, I worked with a team that had no pipeline but
nevertheless delivered continuously, and I feel that the absence of a
pipeline actually improved the behavior of the team.

I would claim, in fact, that the pipeline concept is a red herring.
Continuous delivery is really about two things: testing strategy and
branching strategy.

We’ve Seen This Before
If you think about it, a pipeline is an awful lot like a waterfall process,
just sped up. Worse, the pipeline job is really a reinvention of 1980s
batch processing: You make some code changes, submit your job,
and wait in line for it to execute so that you can obtain your results
as a report (the pipeline tool’s console log and the JUnit test report).
Is that progress?

It is not. The only real difference is that today’s pipeline doesn’t take
punched cards, and the output reports are accessible via a browser
instead of a printout.

Consider what a team might have to do if they did not have a pipeline:

1. Deploy locally, or remotely using a script
2. Run integration tests locally, or remotely
3. Merge changes into the master, but after local integration

tests pass
4. Deploy via script to a prod segment that receives a small percent

of user traffic and gradually scale up

There’s no mention of a build pipeline anywhere.

So what is the pipeline? Don’t we need it?

Yes, but not in the way that it is usually portrayed. And organizations
that use it the way it is usually portrayed are using it wrong.

Continuous Delivery Is Not a Pipeline
By Clifford Berg

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

18C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

The true role of the pipeline, which is manifest by a build orches-
tration tool such as Jenkins or Azure DevOps Services and the tests
that it runs, is to run tests that cannot be run locally and to rerun
all tests as a regression. It is a policeman: the tests are supposed to
“stay green.”

But if the team has the practice of running those same tests local-
ly—or in isolation before they merge their code, which exposes their
changes to other team members—then when merge does occur, all
tests should pass. The pipeline would be green.

Isolation Is Key
The key element, then, is running tests before merging. You don’t
need a pipeline to do that.

Notice also that in order to run tests before merging, you need a pri-
vate place to deploy so that you can run your tests. That can be your
laptop, or it can be a private area, such as a virtual machine in a cloud
account. You must be able to deploy the system under test in a place
where it will not replace the components that other team members
are testing. In other words, you need to deploy in isolation.

Isolation is key for testing. Once isolated integration tests pass and
you merge changes into the shared development branches, then—
and only then—you are ready to deploy to a shared test environ-
ment. Thus, the real integration testing should happen before code
changes reach the pipeline.

Some tests cannot be run locally, but they can still be run in isolation
in a cloud account or data center cluster. Tests that often cannot be
run locally include behavioral tests in a true production-like envi-
ronment, network failure mode tests in which network anomalies
are created, soak tests that run the application for a long time, and
performance tests that stress the application.

The pipeline is a set of automated quality gates. However, if you are
doing things right, you should have found most functional defects

before code hits the pipeline. You do that by running some integra-
tion tests, and quality checks such as security scans, locally. This is
known as shift-left testing, and it is how advanced DevOps organi-
zations do things. If you are debugging functional errors in your
pipeline, you are doing 1980s-era batch programming, and you are
doing DevOps wrong.

The pipeline is important; it is an integral part of DevOps. However,
it is not the central element. The central element is the practice of
testing continually using automated tests.

This enables programmers to have a “red-green” feedback loop in
which they find defects as soon as possible—ideally, on their own
workstation and before they merge their changes into the shared
codebase—instead of downstream, where defects affect everyone
else’s changes and diagnosing problems is difficult.

The core to DevOps is the set of practices that make this shift-left ap-
proach possible. These include practices for branching and merging,
as well as setting things up so that many kinds of integration testing
can be performed locally on programmers’ laptops or in cloud
accounts that they have direct access to, so that a programmer can
initiate an integration test run that occurs in isolation from all other
programmers.

DevOps is a shift-left approach. The pipeline is important, but it is
not the central paradigm.

The pipeline concept is a red
herring. Continuous delivery is
really about two things: testing
strategy and branching strategy.

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

19C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

In recent years, many organizations have been impacted by DevOps.

Some have implemented DevOps end to end by changing people’s
mindsets, automating deployment and build processes by imple-
menting appropriate tools and processes, increasing test automa-
tion, breaking up silos between development and operations, and
automating monitoring and reporting. Most organizations, though,
have just started on their DevOps journey or are somewhere in the
middle of the transformation process.

Part of the path to DevOps requires adoption of agile methodolo-
gies. What does it mean for testing when you switch from the tradi-
tional waterfall model, with a few long release cycles per year, to the
agile model, with changes occurring every two weeks, or possibly
even more quickly?

In most organizations, the world of legacy systems collides with the
world of modern applications. However, the two need to coexist. In
the past, we were executing regression tests for legacy systems over
several weeks—manually as well as automated—but we don’t have
the same amount of time for testing anymore.

Switching from a traditional waterfall model to an agile one requires
new testing approaches.

Optimizing test automation is an excellent way to bridge this gap.
With automated tests in place, it is possible to allocate scarce testing
resources to high-value activities, reduce time spent on test execu-
tion, and increase the number of test cycles possible in a shorter

amount of time. The impact of these changes can be realized imme-
diately with reduced efforts, cost savings, and dramatically improved
time-to-market readiness.

My organization has implemented a lot of automation in the last few
years—and made many mistakes in the process! But we also learned
a lot and are now able to adapt better to a world that’s becoming
more and more agile. Automation only works if you have robust
tests that can run unattended from the beginning to end.

5 Key Factors to Achieve Agile
Testing in DevOps
By Denise Rigoni

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

20C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

Here are five key factors to achieve agile software testing in DevOps.

1. Test data management
Having the right test data is the first important step in automation. If
your test data is not stable, you will never succeed. According to soft-
ware industry statistics, nearly 30 percent of test execution failures
are due to improper test data.

For each of your test cases, define what data is needed in order to
execute it. Keep it flexible, describing the attributes your test data
needs to fulfill rather than the test data itself. For example, “John
Doe from UK” is the test data itself, and the correct definition would
be “Male natural person with nationality UK.”

Once you have defined the required attributes, where is the best
place to find test data? To be completely flexbile, and with the new
GDPR legislation especially, it makes sense to build up required test
data synthetically. This is a good option if you don’t need historical
data (even though that is also possible to build) and if your data
setup is not too complicated or distributed across too many different
systems.

If you require more complex data, you might use existing customer
data that has been anonymized. In this case, queries are needed
to find data in the databases matching the exact combinations of
attributes.

Usually, a combination of both approaches works best. Creating syn-
thetic test data and running queries on a database to attain highly
suitable test data can and should be automated.

Proper test data management is not only a must for automation;
it’s required for manual testing as well. According to some surveys
and statistics, manual testers spend 50 percent to 75 percent of their
effort on finding and preparing appropriate test data. Test data must
be independent from people maintaining it for you to get a return
on investment.

2. Flexible steering
When you design your test cases, use steering parameters instead of
copying the same test case several times to fulfill certain criteria.

Let’s assume you need to run your test case first in a development
environment and later on in a production-like environment. You
would need to log in with role X and role Y. It’s inefficient to copy the
test case four times for each combination of environment and role
when you can enter these parameters only once in the test case as a
steering element. This reduces the overall maintenance of this test
case by 75 percent.

Whenever possible, it’s advisable to work with reusable test step
blocks. Frequently and repetitively used test steps can be defined
once and reused in different test cases. For example, with a login
for an application or generation of a new client, which are used over

Switching from a traditional waterfall
model to an agile one requires new testing
approaches. Optimizing test automation is an
excellent way to bridge this gap.

http://techwell.com
https://www.ibmbigdatahub.com/sites/default/files/whitepapers_reports_file/IBM_Test_Data_Management_V0.4.pdf
 https://well.tc/DevOpsEasteGuide
 https://well.tc/DevOpsEasteGuide

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

21C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

and over again for subsequent test cases, there will no longer be the
need for repetition, which saves valuable time and effort.

A failing test case often results in an end to the automated execu-
tion; therefore, the next test case cannot run, because the applica-
tion was left in an “undefined” state. Imagine starting the automat-
ed execution in the evening to run the test cases overnight. The next
morning you would find your test cases were not executed because
the first test case that had failed and prevented all the others from
running.

This can be avoided by defining recovery scenarios for each test case
or making them completely independent of each other. Instruct the
test case what to do in case of failure.

3. Test environment and service virtualization
Next to missing test data, unstable, unavailable, or incomplete test
environments are one of the biggest time-consumers in testing.

Consider this scenario: Your tests are planned, testers organized
and blocked their time on a certain day, and, finally, when you want
to start testing the application, it is not available. Or the application
itself is available, but another dependent application or dependent
service delivering the data you needed is not.

The more people and applications involved, the more complex the
test environment becomes, and the risk of unavailability increases.

However, in our modern agile world, the days of waiting to test
everything until all components are developed and all systems and
services are completed are gone. Instead, you need to simulate
those components or systems that are not yet connected or devel-
oped, so testing can be started earlier. This is possible with service
virtualization. You need to know the parameters a service expects
and the data it returns.

A good service virtualization testing tool can react to changing cir-
cumstances and switch from virtualized services to the real service if
it becomes available, then back to virtualized services if the service is
not available for whatever reason.

Bear in mind you can’t do all your testing based on virtualized ser-
vices; at a certain point, you’ll have to start real, end-to-end testing.
But many critical defects will be found before your end-to-end tests
if you start testing much earlier. This saves a significant amount of
rework and debugging costs later.

Additionally, a well-managed test environment helps to improve
stability. This can be achieved with organizational measures (e.g., a
centralized test environment management team that coordinates
and controls the test environments) or defined test environment
management processes.

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

22C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

Many organizations do not want too many processes put in place
because they believe agile development doesn’t need processes.
However, certain processes—or, rather, rules of engagement—are
necessary to improve test environment stability.

These processes don’t need to be very time-consuming, at least for
more advanced test stages, such as end-to-end tests or business
verifications:

• If several applications and services from different teams are in-
volved, define time slots when deployments should happen—testers
will then know when everyone is done and they can start testing

• Actions like restarts of applications and services, database refresh-
es, or other outages should be planned during time slots where
no testers will test

• If testers communicate when they plan to test—either manual or
automated test cases—such as by calendar, a test environment
management team can better coordinate and communicate

• The more detailed new changes are communicated to the testers,
the better they can adapt their test cases

• If scripted properly, DevOps automation can also help manage
environments.

4. Test users
When automating test cases, it’s best to never include your person-
al credentials in the automation. If you’re out sick, your colleague
won’t be able to execute the test cases you’ve designed. Also, using
another person’s personal user account is typically a security breach
in most companies.

The correct approach is to set up special test users that cover the
different roles you require for testing your applications. Test users
will persist if someone leaves the company or changes their role.
Just make sure you take into account roadblocks like single sign-
on, remote desktop connections, firewalls, cross-border access, or
other barriers.

5. Continuous testing and continuous integration
Integrate your automated test cases into the continuous software
development cycle. If the test cases are stable, why not run them ev-
ery night or after every build to quickly get results about the status
of the software? Ensure long-running tests are only integrated in
test automation that runs during night builds, when enough time is
available to finish execution before the next build starts.

Some automation tools integrate with standard development tools
that provide continuous integration capabilities. Use distributed exe-
cution to run automated test cases on several machines in parallel to
reduce testing time and get the results as early as possible.

Many organizations do not want too many processes
put in place because they believe agile development
doesn’t need processes. However, certain processes
are necessary to improve test environment stability.

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

23C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

Over the last year, I’ve heard a lot of buzz around the term “con-
tinuous testing,” or testing before, during, and after each software
change is made. This is both exciting and confusing for me: It’s great
that people are pushing for more testing, but isn’t continuous test-
ing something that testers have always been striving for? Still, any
excuse for getting people excited about additional testing is a win.
There are several activities your organization should adopt to move
toward continuous testing:

• Collaborating on requirements (behavior-driven development,
or BDD)

• Constantly validating change (regression testing)
• Dev-test pairing in exploratory testing and reviewing test cases
• Automated testing in CI (unit testing, API testing, and code analysis)
• Continuously improving test approaches, test suites, and test scripts
• Reviewing customer feedback and product ratings

There are also some enablers your organization should embrace.
Let’s look at three practices that will help your company get ready
for continuous testing.

Whole-Team Quality
It’s important to realize that QA does not “own” quality. QA doesn’t
introduce issues that impact quality, and they don’t fix these issues.
They simply find them and point them out.

Many of these issues could be identified earlier. If we shift the focus
of testing to start sooner in the development process, we can save
time and money.

Key Enablers for Continuous Testing
By Max Saperstone

You can’t test
continuously if you
don’t start testing early!

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

24C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

Good quality code starts with the design of the software. Get devel-
opers to do test-driven development. Better yet, get the organization
to adopt BDD practices: Have the developers, testers, and product
owner all agree on functionality and tests before code is written.
Shifting testing left is key to your continuous testing journey.

Build Orchestration and Continuous Integration
Having an automated build and continuous integration (CI) pipeline
is vital to being successful in your continuous testing effort. This way,
once code is committed to a source control repository, testing can
begin. This means you need to ensure that your application builds,
unit tests pass, code coverage is at an acceptable level, and so on.

Developer-level testing is crucial, as it provides rapid feedback and
ensures that at the lowest level, the code does what is expected.
Consider what other things you can throw into your CI: static or
dynamic analysis, some security checks, or maybe even some API

validation. The more information, the better, as long as it provides
rapid feedback to the team.

Automated Testing below the UI
One big thing to remember when testing is that your application is
more than a user interface. You probably have some APIs, a back
end, and a database, all of which should be tested. Not only is it
easier to test at these lower levels, but these areas can typically be
tested earlier in the development process because they usually don’t
need to be fully developed in order to start testing them. This means
you can get started testing sooner, which is of course the goal.

Additionally, API tests typically run tens to hundreds of times faster
than the UI tests. This plays in perfectly with our idea of rapid feed-
back, and keeps pushing testing further left.

Remember, you can’t test continuously if you don’t start testing early!

http://techwell.com

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

25C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

Insight from the Industry
“In shifting left, teams see
huge benefits such as finding
bugs much earlier, sometimes even
before code is ever written. This results
in a higher quality of code and a far less
expensive way in achieving such.”
—Angie Jones

“We’re not going faster,
we’re not coding any
faster, we’re not typing any
faster. We’re learning good ways
to slice these features down, so
we can deliver small increments.”
—Lisa Crispin

GA IN MORE INSIGHT W I TH THESE V IDEO INTERV IE WS

READ THE FULL INTERVIEW LISTEN TO THE FULL INTERVIEW

DevOps
Misconceptions

and Testing
Confidence: An
Interview with
Hans Buwalda

Understanding
the Role of QA
in DevOps: An
Interview with
Gene Gotimer

Shift Your
Mindset with
Your Testing:
An Interview
with Isabel

Evans

Deciding
if You’re

Technically
Ready for

DevOps: An
Interview with

Sunil Sehgal

Continuous
Testing and

Open Source
Integration: An
Interview with
Alex Martins

http://techwell.com
https://www.stickyminds.com/interview/it-s-time-testers-own-shift-left-narrative-interview-angie-jones
https://anchor.fm/techwell/episodes/Testing-in-DevOps-A-Conversation-with-Lisa-Crispin-e6fm70
https://www.stickyminds.com/interview/devops-misconceptions-and-testing-confidence-interview-hans-buwalda
https://www.stickyminds.com/interview/understanding-role-qa-devops-interview-gene-gotimer
https://www.stickyminds.com/interview/shift-your-mindset-your-testing-interview-isabel-evans
https://www.stickyminds.com/interview/deciding-if-you-re-technically-ready-devops-interview-sunil-sehgal
https://www.stickyminds.com/interview/continuous-testing-and-open-source-integration-interview-alex-martins

3
Why Software Testing Is
Key to DevOps

4
Test Everywhere: A
Journey into DevOps and
Continuous Testing

7
Shifting Your Testing:
When to Switch Gears

11
Continuous Testing,
Shifting Left, and Test
Automation: Getting It
Straight

12
Demystifying DevOps:
A Day in the Life of a
DevOps Tester

13
Why You Need Continuous
Testing in DevOps

17
Continuous Delivery Is
Not a Pipeline

19
5 Key Factors to Achieve
Agile Testing in DevOps

23
Key Enablers for
Continuous Testing

25
Insight from the Industry

26
Additional Resources

26C O P Y R I G H T 2 0 1 9

eGuideT E S T I N G I N D E V O P S

Additional Resources
M O R E I N F O R M A T I O N F O R S O F T W A R E P R O F E S S I O N A L S

N A R R O W Y O U R S E A R C H T O A S P E C I F I C T Y P E O F R E S O U R C E :

Our partner, Coveros, has significant DevOps experience and can help organizations implement continuous testing and
integrate automated testing solutions into their CI/CD pipeline. Coveros offers courses on automation, DevOps and
DevSecOps, common development and automation tools, and fundamental and specialized software testing topics—all of
which include best practices taught by industry leaders. Whether you’re looking to get hands-on experience for yourself,
your team, or your organization, Coveros has a learning solution for you.

Automation courses | DevOps courses | Dev & Testing Tools courses | Agile Testing services

StickyMinds Articles
StickyMinds articles cover a wide range of
software testing topics, including testing in
DevOps, continuous testing, test automation,
agile testing, test process improvement, and
much more. Click here to read articles about
continuous testing and DevOps on StickyMinds.

Interviews
Each year, TechWell interviews dozens of
software professionals, including well-known
thought leaders, seasoned practitioners, and
respected conference speakers. Click here
to read, listen to, and watch interviews with
testing experts about continuous testing
and DevOps.

TechWell Insights
Read stories about continuous testing, testing
in DevOps, agile, teams, and more, all written
by software industry professionals. New stories
are added each weekday, so click here to read
the latest—or sign up to receive the weekly
newsletter roundup of the newest stories.

TechWell Conference Presentations
Couldn’t make it to a TechWell conference to
sharpen your testing knowledge? TechWell
conference presentations are available to
StickyMinds members for free soon after
conferences end. Click here to join StickyMinds
and access conference presentations related to
testing in DevOps and continuous testing.

TechWell Conferences
TechWell conferences feature keynote
presentations, tutorials, and classes covering
continuous testing, DevOps, agile, test
automation, mobile testing, test management,
and more. Learn from experts in the field
and network with your peers to get the most
immersive conference experience possible.
Click here to learn more.

The TechWell Hub
Join the active and engaging TechWell Hub
community on Slack to keep in touch with
what’s happening in the industry and ask
questions about your day-to-day challenges.
The Hub offers a safe space to get real-time
answers from other software professionals in
your shoes, and even experts in the field!
Click here to join for free.

Accelerate
Delivery

StickyMinds is home to thousands of software testing resources, including
informative articles about all aspects of testing and interviews with industry
notables. StickyMinds offers how-to advice and views on the latest ideas and
practices from experienced software professionals and thought leaders. Join
the community to gain access to exclusive members-only content such as
conference presentations, Q&A discussions, a weekly newsletter, and more.

J O I N
H E R E

http://techwell.com
https://well.tc/5xoy
https://well.tc/5xot
https://well.tc/5xov
https://well.tc/5x3k
https://well.tc/5x3j
https://well.tc/5x3j
https://well.tc/5xwf
https://well.tc/5xwf
https://well.tc/5x3y
https://well.tc/5x3y
https://well.tc/5x3t
https://well.tc/5x3t
https://well.tc/5xw4
https://well.tc/5xw4
https://well.tc/5xwo
https://well.tc/5xwo
https://www.coveros.com/?utm_source=wp&utm_medium=digital-pub&utm_campaign=mk-devsecops-eguide-july19-coveros-logo
https://well.tc/5x3r

