
Getting started with
performance testing

Table of contents

1. Chapter 1: Introduction to performance testing 3
 a. The state of complexity in modern apps 3
 b. Performance: Imperative to a successful user experience 3
 c. Phases of a load testing project 4

2. Chapter 2: Establishing a performance testing strategy 5
 a. Risk-based testing 5
 b. Component testing 8
 c. Test environment 8
 d. Devise a test plan 9

3. Chapter 3: Modeling performance tests 10
 a. Establish service level agreements (SLAs) and 11
 service level objectives (SLOs)
 b. Test selection 11
 c. Include think times 16
 d. Validate the user experience 16
 e. Monitoring 17

4. Chapter 4: Executing a performance test 19
 a. Design 19
 b. Execution 21
	 c.	Effective	test	monitoring	 22
 d. Analysis 23

5. References 24

tricentis.com 3© 2021 Tricentis USA Corp. All rights reserved |

Applications are becoming more and more involved, with shorter development cycles. This requires
new, Agile development and testing methodologies. Application performance as part of the global user
experience is now the key aspect of application quality.

“Old	 school,”	 sequential	 projects	 with	 static	 qualification/implementation/test	 phases	 that	 put	 off	
performance testing until the end of the project may face a performance risk. This is no longer acceptable
by today’s application quality standards.

This	white	paper	provides	practical	information	on	how	to	execute	efficient	performance	testing	in	this	
new and more demanding environment.

The state of complexity in modern apps

One of the primary drivers behind this shift to modern load testing is the growing complexity of the IT
landscape:

• Most users are using mobile devices, thin clients, tablets, and other devices to reach the information.
• Complex architectures that are shared by several applications at the same time are being built.
•	 New	technologies	offer	a	range	of	solutions	(AJAX	framework,	RIA,	WebSocket,	and	more)	that	improve	

applications’ user experience.

Historically, applications have been tested to validate quality in several areas: functional, performance,
security, etc. These testing phases answer to user requirements and business risks. However, the dialogue
has changed; the conversation is no longer about quality but about user experience. The user experience
is a combination of look-and-feel, stability, security, and performance.

Performance: Imperative to a successful user experience

Performance is a key factor in the success of the user experience. This is due to advances in technology,
the complexity of the architecture, and the locations and networks of the users. Load testing was a nice
addition to the development process, but now it has become an essential testing step.

Load and performance testing answers the following questions:

• Is the application capable of handling a certain number of simultaneous users?
• Is the average response time for pages acceptable under this set load?
• Does the application revert to normal behavior after a load peak?

CHAPTER 1: INTRODUCTION TO PERFORMANCE TESTING

tricentis.com 4© 2021 Tricentis USA Corp. All rights reserved |

• How many users can the application handle while maintaining an adequate response time?
•	 What	is	the	load	threshold	above	which	the	server(s)	begins	to	generate	errors	and	refuse	connections?
• Does the server(s) remain functional under high load, slow down, or crash?

Like any testing activity, performance testing requires proper methods and logic.

When	an	application	passes	performance	testing	but	then	fails	in	production,	it	is	often	due	to	unrealistic	
testing. In these cases, it is easy but misguided to blame the testing itself or the tools used to execute it.
The	real	problem	is	usually	test	design	without	the	correct	basis.	It	is	necessary	to	ask,	“What	did	we	need	
to know that, if we had known it, would have allowed us to predict this failure before production?” In other
words:	“How	can	we	deliver	efficient	performance	testing?”

Phases of a load testing project

Current development methodologies such as Agile and DevOps allow for the creation of applications that
quickly answer to customers’ needs. These methodologies involve updating the project organization and
require close collaboration between teams.

In these methodologies, the project life cycle is organized into several sprints, with each sprint delivering
a part of the application.

In	this	environment,	the	performance	testing	process	should	follow	the	workflow	below.

Requirements Sprint Deploy to stakeholders

Feedback

Performance
qualification

Managing the backlog

Component testing
strategy

Plan a sprint Run a sprint

Daily cycle

Component
testing

End-to-end
performance testing

tricentis.com 5© 2021 Tricentis USA Corp. All rights reserved |

A	performance	testing	strategy	should	be	implemented	at	an	early	stage	of	the	project	life	cycle.	The	first	
step:	performance	qualification.	This	defines	the	testing	effort	of	the	whole	project.

An “old school” approach to performance testing would force the project to wait for an assembled
application before performance validation would begin. In a modern project life cycle, the only way to
include performance validation in an early stage is to test individual components after each build and
implement end-to-end performance testing once the application is assembled.

CHAPTER 2: ESTABLISHING A PERFORMANCE TESTING STRATEGY

This	is	the	first	and	most	crucial	step	of	performance	testing.	It	defines:

• The performance testing scope
• The load policy
• The SLA (service level agreements) and service level objectives (SLOs)

It is never possible to test everything, so conscious decisions about where to focus the depth and intensity
of testing must be made. Typically, the most fruitful 10% to 15% of test scenarios uncover 75% to 90% of
significant	problems.

Risk-based testing

Risk	assessment	provides	a	mechanism	with	which	to	prioritize	the	test	effort.	It	helps	to	determine	where	
to	direct	 the	most	 intense	and	deepest	 test	efforts	and	where	to	deliberately	 test	 lightly,	 to	conserve	
resources for intense testing areas.

Risk-based	testing	can	identify	significant	problems	more	quickly	and	earlier	on	in	the	process	by	testing	
only the riskiest aspects of a system.

Most system performance and robustness problems occur in these areas:

• Resource-intensive features
• Timing-critical or timing-sensitive uses
• Likely bottlenecks (based on the internal architecture and implementation)
• Customer or user impact, including visibility
• Prior defect history (observations of other similar systems in live operation)

tricentis.com 6© 2021 Tricentis USA Corp. All rights reserved |

•	 New	and	modified	features	and	functionality
• Heavy demand: heavily used features
• Complex features
• Exceptions
• Troublesome (poorly built or maintained) portions of the system
• Platform maintenance

Here	is	a	list	of	questions	presented	by	industry-expert	Ross	Collard	to	identify	the	different	performance	
risks:

Situational view

•	 Which	areas	of	the	system	operation,	if	they	have	inadequate	performance,	most	impact	the	bottom	
line	(revenue	and	profits)?

•	 Which	uses	of	the	system	are	likely	to	consume	a	high	level	of	system	resources	per	event,	regardless	
of	how	frequently	the	event	occurs?	The	resource	consumption	should	be	significant	for	each	event,	
not high in aggregate simply because the event happens frequently and thus the total number of
events is high.

•	 What	areas	of	the	system	can	be	minimally	tested	for	performance	without	imprudently	increasing	
risk, to conserve the test resources for the areas which need heavy testing?

Systems view

•	 Which	system	uses	are	timing-critical	or	timing-sensitive?

•	 Which	uses	are	most	popular	(e.g.,	happen	frequently)?

•	 Which	uses	are	most	conspicuous	(e.g.,	have	high	visibility)?

•	 What	circumstances	are	 likely	to	cause	a	heavy	demand	on	the	system	from	external	users	(e.g.,	
remote visitors to a public website who are not internal employees)?

• Are there any notably complex functions in the system — for example, in the area of exception
handling?

• Are there any areas in which new and immature technologies have been used, or unknown and
untried methodologies?

• Are there any other background applications that share the same infrastructure, and are they
expected	to	interfere	or	compete	significantly	for	system	resources	(e.g.,	shared	servers)?

tricentis.com 7© 2021 Tricentis USA Corp. All rights reserved |

Intuition/experience

•	 What	 can	 we	 learn	 from	 the	 behavior	 of	 the	 existing	 systems	 that	 are	 being	 replaced,	 such	 as	
their workloads and performance characteristics? How can we apply this information to testing
the new system?

•	 What	has	been	your	prior	experience	with	other	similar	situations?	Which	features,	design	styles,	
subsystems, components, or system aspects typically have encountered performance problems?
If you have no experience with other similar systems, skip this question.

•	 What	combinations	of	the	factors	you	identified	by	answering	the	previous	questions	deserve	a	
high	testing	priority?	What	activities	are	likely	to	happen	concurrently	and	cause	heavy	load	and	
stress on the system?

• Based on your understanding of the system architecture and support infrastructure, where are the
likely bottlenecks?

Requirements view

• Under what circumstances is heavy internal demand likely (e.g., by the internal employees of a
website)?

•	 What	is	the	database	archive	policy?	What	is	the	ratio	of	data	added/year?

• Does the system need to be available for 7 hours, 24 hours, etc.?

• Are there maintenance tasks running during business hours?

The answers to these questions will help identify:

• Areas that need to be tested

• The type of tests required to validate the performance of the application

tricentis.com 8© 2021 Tricentis USA Corp. All rights reserved |

Component testing

Once	the	functional	areas	required	for	performance	testing	have	been	identified,	decompose	business	
steps	into	technical	workflows	that	showcase	technical	components.

Why	 should	business	 actions	be	 split	 into	 components?	 Since	 the	 goal	 is	 to	 test	 the	performance	at	
an	early	stage,	 listing	all	 important	components	will	help	 to	define	a	performance	 testing	automation	
strategy. Once a component has been coded, it makes sense to test it separately and measure:

• The response time
• The maximum calls that the component can handle

Moreover,	component	testing	supports	JMS,	API,	service,	messages,	etc.,	allowing	scenarios	to	be	easily	
created and maintained. Another major advantage of this strategy is that the components’ interfaces are
less likely to be impacted by technical updates. Once a component scenario is created, it can be included
in the build process, and feedback on the performance of the current build can be received.

After each sprint, it is necessary to test the assembled application by running realistic user tests (involving
several components). Even if the components have been tested, it is mandatory to measure:

• The behavior of the system with several business processes running in parallel
• The real user response time
• The availability of the architecture
• The sizing of the architecture
• Caching policy

The	testing	effort	becomes	more	complex	with	the	progression	of	the	project	timeline.	In	the	beginning,	the	
focus is on the quality of applications and then concentrated on the target environment, architecture, and
network. This means that performance testing objectives will vary depending on the timeline of the project.

Test environment

It	is	imperative	that	the	system	under	test	be	properly	configured	and	that	the	results	obtained	can	be	
used for the production system. Environment and setup-related considerations should remain top-of-
mind during test strategy development. Here are a few:

tricentis.com 9© 2021 Tricentis USA Corp. All rights reserved |

•	 What	data	 is	being	used?	 Is	 it	real	production	data,	artificially	generated	data,	or	 just	a	 few	random	
records? Does the volume of data match the volume forecasted for production? If not, what is the
difference?

•	 How	are	users	defined?	Are	accounts	set	with	the	proper	security	rights	for	each	virtual	user,	or	will	a	
single administrator ID be reused?

•	 What	are	the	differences	between	the	production	and	the	test	environment?	If	the	test	system	is	just	a	
subset of production, can the entire load or just a portion of that load be simulated?

It is important that the test environment mirror the production environment as closely as possible, but
some	differences	may	remain.	Even	if	tests	are	executed	against	the	production	environment	with	the	
actual production data, it would represent only one point in time. Other conditions and factors would also
need to be considered.

Devise a test plan

The test plan is a document describing the performance strategy. The test plan should include:

• Performance risk assessments highlighting the performance requirements
•	 Performance	modeling:	explaining	the	logic	to	calculate	the	different	load	policies
• The translation of the main user journey into components
•	 The	description	of	the	different	user	journeys	with	the	specific	think	time	per	business	transaction
• The dataset(s)
• The SLA
• The description of each test that needs to be executed to validate the performance
• The testing environments

The test plan is a key artifact of a well-designed and -executed performance testing strategy, acting as
evidence	that	a	team	has	satisfactorily	considered	the	critical	role	performance	plays	in	the	final	end-user	
experience.

In many cases, project teams ensure the delivery of performance test plans as part of feature work during
planning	and	development	cycles	by	requiring	them	as	part	of	their	“definition	of	ready.”	Though	each	
feature story or use case may not require the same level of performance testing, making the thought
process a hard requirement for completion leads to better systems and an improved mindset over the
end-to-end quality of what the team delivers.

tricentis.com 10© 2021 Tricentis USA Corp. All rights reserved |

CHAPTER 3: MODELING PERFORMANCE TESTS

The objective of load testing is to simulate realistic user activity on the application. If a non-representative
user	journey	is	being	selected	or	if	the	right	load	policy	is	not	being	defined,	the	behavior	of	the	application	
under load will not be able to be properly validated.

Performance test modeling doesn’t require any technical skills, only time to fully understand the application:

• How do users work on the system?
•	 What	are	their	habits?
•	 When	and	how	often	are	they	using	the	application?	And	from	where?
• Is there any relationship between external events and activity peaks?
• Is the company business plan related to the activity of the application?
•	 Is	the	user	community	going	to	expand	in	different	geographies?
•	 Is	there	a	marketing	plan	to	market/promote	the	application?	If	yes,	who	is	the	audience?
• Are there any layers of architecture shared with another system?

To fully understand the application during performance modeling, the following roles should be involved:

• Functional architect
• Business analysts
• Project leader

Of	course,	the	different	roles	will	provide	different	feedback,	but	the	idea	is	to	understand	the	application,	
the end users’ habits, and the relationship of the application with the current or future organization.

System logs or database extractions are also very useful. These would easily point out the main
components and functional areas currently used in production. They would also retrieve the number of
transactions/hour	per	business	process.

•	 When	considering	the	user	load,	it	is	important	to	be	aware	of	the	difference	between	the	concurrent	
number of users and the number of users within the expected audience. An application delivered to
5000 users may have only 500 users accessing it concurrently.

• If there isn’t any estimation on the maximum concurrent users, then the number of users can be
calculated	based	on	the	number	of	transactions/hour	per	business	actions.

tricentis.com 11© 2021 Tricentis USA Corp. All rights reserved |

Establish service level agreements (SLAs) and service level objectives (SLOs)

Service level agreements and service level objectives are the keys to automation and performance
validation.	 The	 project	 leader	 and	 functional	 architect	 need	 to	 define	 ideal	 response	 times	 for	 the	
application. There are no standard response times.

An	SLA/SLO	will	allow	the	performance	engineer	to	give	a	status	on	the	performance	testing	results.	With	
the	SLA/SLO,	performance	testing	can	be	easily	automated	to	identify	performance	regression	between	
several releases of the application.

If the importance of component testing and of including performance testing in an early stage of the
project	is	properly	understood,	the	SLA	or	SLO	must	be	defined	at	the	component	level	for	the	tests	to	
be properly automated.

Test selection

Each test that is run will address one risk. Each test will give a status on the performance requirements.

Of course, most projects focus only on reaching the limit of the application. Reaching the application’s
limit	is	important	to	validate	the	sizing	and	the	configuration	of	the	architecture,	but	it	most	likely	won’t	
answer to all of the performance requirements.

There are other tests that need to run to properly qualify the performance of the application. These tests
will help validate performance requirements:

• Unit test: Many projects overlook the power of unit testing. Don’t start running load tests if the
performance is not acceptable with one single user. Unit testing allows the application to be instrumented
with deep-dive analytics tools and provides useful information to the developers.

 This step should be a mandatory part of any load testing strategy.

tricentis.com 12© 2021 Tricentis USA Corp. All rights reserved |

• Connection test: Let’s say that each morning, all of the application users connect to the system around
the	same	time	and	then	grab	a	coffee	or	chat	with	their	colleagues.	Even	if	there	are	no	major	activities	
on the business components of the application, the architecture has to handle this very important peak
of user sessions. It should be obvious, then, to ensure that the system won’t break every morning. The
operations team’s lives will be made much easier by validating this point. This test will ramp up all the
expected users.

• Production activity test: Every application has major business actions. These actions often result in
data being updated or inserted into the database. Therefore, there should be a good understanding
of the number of records created per day, or per hour. The production activity test ensures that the
system	can	handle	the	load	related	to	the	number	of	transactions/hour	expected	in	production.	This	
test will load and validate the behavior of the business components within the database. Two main
requirements	 for	 this	 type	 of	 test	 are	 the	 number	 of	 transactions/hour	 per	 user	 journey	 and	 the	
appropriate think times.

• Peak test: Every application experiences peak volumes. Even if those peaks appear only once or twice
each year, it is mandatory to ensure that the application can handle them. The purpose of a peak test is
to simulate an important increase of users during a short period (e.g., a retail site may need to simulate
the activity that would come as a result of a big sale on extremely popular products).

Maximum number of
concurrent sessions

tricentis.com 13© 2021 Tricentis USA Corp. All rights reserved |

• Soak test:	The	application/architecture	will	most	likely	be	available	for	several	days	or	even	weeks	on	
end. If there are not dedicated times set for maintenance tasks, then it is important that the architecture
will run without failure over a long period. A soak test will run a constant number of users over an
extended	duration.	With	this	test,	it	will	be	easy	to	identify	any	memory	leak	or	network	conjunction	and	
monitor	the	stability	of	the	environment’s	current	configuration.

• Batch test:	Some	applications	are	designed	with	asynchronous	tasks	or	batches.	What	is	the	impact	
of a batch on the real users? Batch testing will run the production activity and trigger the execution of
a	batch	at	a	specific	moment	of	the	test.

Execution of the batch process

The purpose of this test is to identify if the batch has any impact on the user experience.

Average
production activity

Peak activity

Some other load tests could be utilized depending on the constraints of the business and the locations
of	the	users.	There	are	always	events	related	to	the	company	or	organization	that	will	affect	the	load	of	
the application.

tricentis.com 14© 2021 Tricentis USA Corp. All rights reserved |

For	example,	the	load	designed	for	a	trading	application	will	depend	on	the	opening	hours	of	different	
markets. The application will have three typical phases: the Asian users, then the European users
combined with a part of the Asian users, and then the U.S. users combined with the European users.
Every time the markets open or close, there are peaks of trading activity. Therefore, testing would include
different	types	of	load	combining	different	combinations	of	business	cases.

On the other hand, there are tests that are designed to validate the availability of the platform during
maintenance tasks or a production incident:

• Failover test: The purpose of this test is to simulate a production failure on the environment. This
kind of test is mandatory to validate the availability of the environment and to make sure the failover
cluster	mechanism	reacts	properly.	When	the	architecture	has	N	nodes,	it	is	important	to	validate	that	
the N-1 or N-2 nodes can handle the expected load so as not to experience event cascade during a
production problem. The operations team is also interested in whether or not they can complete their
maintenance tasks without having to set the application into a maintenance state. Most high-availability
applications	have	many	nodes	on	different	layers	of	the	architecture:	web	servers,	application	servers,	
database, etc. There should be one test per layer.

• Recovery test: This test is, in fact, the opposite of the degradation test. The test is initiated by stopping
one of the nodes and then restarting the node while the application is loaded. The purpose of this test
is to see how the node reacts to a heavy load just after being restarted.

Reserve proxy

Web server

App server App server

Database Database

Web server

tricentis.com 15© 2021 Tricentis USA Corp. All rights reserved |

Additionally, there may be operational situations to include during the load test to measure application
behavior when the cache is being cleaned up.

There	 is	yet	another	point	that	could	affect	the	performance	of	the	application:	the	data.	Often	when	
load testing, a testing database with less data is used, or at least a database that has been anonymized
for security purposes. The anonymous process usually creates records starting with the same letters
or digits. So all of the indexes used during the load test will be incomparable to those of the normal
production database.

Data	grows	quite	fast	in	production.	The	behavior	of	the	database	is	quite	different	depending	on	the	size	
of the database. If the lifetime of the database is long, then it might make sense to validate the performance
of	different-sized	databases	to	see	if	the	limit	is	different	between	a	light	and	heavy	database.	To	achieve	
this kind of test, a large dataset that points to various areas of the database should be used; never use a
list of names where all the accounts start with AA… AAA2… but instead, have a representative set of data
pointing from A to Z.

The type and complexity of the test will change during the project life cycle:

Unit
component

testing

Robustness of the code Architecture stability End-to-end experience

Component
testing

Production
activity test

Unit
testing

Soak test

Unit test

Connection
test

Mobile
performance

testing

Failover
test

Cloud
testing

Easy/Fast

Medium

Complex/
Slow

tricentis.com 16© 2021 Tricentis USA Corp. All rights reserved |

Include think times

• An important element of performance design is “think time”
• Think time is the time needed for a real user between two business actions:
 – Time to read information displayed on the screen
	 –	Time	to	fill	out	information	in	a	form
• Other real-user actions that do not cause interaction with the application servers

Because	every	real-world	user	behaves	differently,	 think	 times	will	always	be	different.	Therefore,	 it	 is	
important:

• To gather the think time of each business step in each scenario. Avoid using the same think time for
each business step. There are always screens displaying information that end users need to read or
forms	they	need	to	fill	out	before	going	to	the	next	step	of	the	business	process.	There	should	be	a	
specific	think	time	for	each	action

• To calculate the average minimum and maximum think times per action

•	 To	let	the	load	testing	tool	randomly	choose	a	think	time	from	a	specified	range	(min	and	max)

Imagine the application is a castle with big walls and big doors. The components that will be validated
(via load test) are inside that castle. The wall will represent proxy servers, load balancers, caching layers,
firewalls,	etc.

If a test is run without including think times, then only the main door would be hit. Maybe it would break,
but there is a big chance that it would lock everything out after a few minutes. Be gentle and smart, and
hide from the defense. The main door will allow entrance, and the components located inside of the
castle will be able to be properly load tested.

Validate the user experience

As mentioned earlier, once the application is assembled, testing objectives will change. At some point, the
quality of the user experience needs to be validated.

Mobile	 applications,	 rich	 Internet	 applications	 (RIA),	 and	 complex	AJAX	 frameworks	 are	 challenging	 in	
the way most are used to measure response times. In the past, measurements have been limited to
download	time	and	time	to	first	buffer	(TTFB).

tricentis.com 17© 2021 Tricentis USA Corp. All rights reserved |

This approach does not make sense because much of the rendering time that contributes to user
experience	depends	on	local	ActiveX/JavaScript	or	native	application	logic.	As	such,	testing	measurements	
cannot be limited to TTFB and download time because the main objective here is to validate the global
user experience on the application.

Measuring the user experience is possible by combining two solutions: load testing software (e.g., Tricentis
NeoLoad) and a browser-based or mobile testing tool.

The load testing tool will generate 98% of the load on the application. The browser-based or mobile-
based testing tool will generate the other 2% of the load to retrieve the real user experience (including
the rendering time) while the application is loaded.

This	means	that	the	business	processes	and	transactions	to	be	monitored	by	the	browser/mobile-	based	
solutions	need	to	be	carefully	identified.

Monitoring

Running tests without monitoring is like watching a horror movie on the radio. You will hear people
scream without knowing why. Monitoring is the only way to get metrics related to the behavior of the
architecture.

Browser

Download time

TTFB

Application

Request Business
process

tricentis.com 18© 2021 Tricentis USA Corp. All rights reserved |

However, many projects tend to lack performance monitoring due to:

• The lack of tools
• The fear of the requirements needed to enable monitoring

Though	monitoring	 is	 not	 limited	 to	 the	operating	 system	of	 the	different	 server(s),	 its	 purpose	 is	 to	
validate that each layer of the architecture is available and stable. Architects took time to build the
smartest	architecture,	so	it	is	necessary	to	measure	the	behavior	of	the	different	layers.

Monitoring allows for a more comprehensive understanding of the architecture and the investigation into
the behavior of the various pieces of the environment:

• Operating system: CPU, memory, disk, and network utilization
• Application server: memory utilization, garbage collector, thread utilization, sessions
• Web server: worker, number of sessions
• Database:	 buffer	 pool,	 cache	 utilization,	 number	 of	 transactions,	 number	 of	 commits,	

% indexed queries
• Caching server: hit ratio

Many projects use production monitoring tools to retrieve metrics from the architecture. This approach is
not recommended since production monitoring has a large granularity between each data point (every 2-5
minutes).	In	load	testing,	it	is	important	to	have	monitored	data	collected	at	least	every	five	seconds.	The	
performance	engineer	needs	to	be	given	every	opportunity	to	identify	bottlenecks.	When	a	peak	appears	
for only a few seconds during a test, it is vital to have enough granularity to point out the bottleneck.

Monitoring requires technical requirements such as a system account, which services to be started,
firewall	 ports	 to	 be	 opened,	 etc.	 Even	 if	 it	 seems	difficult	 to	meet	 those	 requirements,	monitoring	 is	
possible if there is proper communication with operations; sending them these requirements in advance
will facilitate that communication.

A key takeaway for monitoring: anticipate requirements at an early stage.

tricentis.com 19© 2021 Tricentis USA Corp. All rights reserved |

CHAPTER 4: EXECUTING A PERFORMANCE TEST

Each	performance	testing	activity	is	mapped	out	in	the	following	workflow:

Performance testing objectives will need to adapt depending on results. The performance engineer will
analyze these results between testing and tuning. Ultimately, the main objectives of a performance test
are to identify bottlenecks and suggest solutions.

Below	are	the	three	key	steps	in	executing	an	effective	performance	test.

Management

Design

Validation of the environment

Design of the user profile

Execution

Analysis

Tuning

Test settings

Test execution

Validation

Design

The design phase is often known as the “scripting” phase, but new technology has made the design phase
more complex.

Creating performance testing scripts is, in essence, a software development project. Sometimes automatic
script generation from a recording is mistakenly interpreted as the whole process of script creation, but
it is only the beginning. Only in very simple cases will automatic generation provide completed scripts; in
most	non-trivial	cases,	it	is	just	a	first	step.	Scripts	need	to	be	correlated	(get	dynamic	variables	from	the	
server)	and	parameterized	(use	different	data	for	different	users).	These	operations	are	prone	to	errors	
because changes are made directly to the communication stream. Any mistakes at this point can be very
dangerous because these types of mistakes usually cannot happen in the real world where the users
interact with the system through a user interface or API calls.

tricentis.com 20© 2021 Tricentis USA Corp. All rights reserved |

AJAX	applications,	WebSocket,	and	polling	technologies	generate	regular	requests.	These	requests	are	
not generated by the interaction of the user within the graphical user interface. Instead, many calls are
generated by one or more individual page components. For example, on an eCommerce website, there is
always a direct link to the user cart from the pages. This link needs to show the user the exact number of
products currently in his or her basket. Most of the time, the number of products is displayed via a polling
request	(a	technical	call	done	every	five	seconds).

This type of call needs to be understood by the performance engineer. All “polling” mechanisms would
need to be removed from the business step of the user journey and placed into a dedicated thread.

Another	good	example	is	adaptive	streaming	technology.	Many	testers	often	rely	on	the	record/	playback	
approach.	Unfortunately,	this	type	of	logic	won’t	benefit	any	testing	strategy.

The goal is to qualify the behavior of the application under realistic load, not to validate the caching.

Replaying back the recording request with no correlation will only call the cache of the application:

•	 Web	cache
• Application cache

Another important element of the design step is the dataset. Using a small set of data will generate
the same query on the database. As previously mentioned, the point of a load test is not to qualify the
efficiency	of	the	database	cache	or	simply	generate	deadlocks.

After	the	script	is	created,	it	should	be	evaluated	for	a	single	user,	multiple	users,	and	with	different	data.	
Do not assume that the system works correctly when a script is executed without errors. Instead, ensure
that the applied workload is doing what it is supposed to do and that all errors are caught and logged. It
can be done directly by analyzing server responses or, in cases when this is impossible, indirectly. It can
be done, for example, by analyzing the application log or database for the existence of particular entries.

Many tools provide some way to verify workload and check errors, but a complete understanding of
exactly what’s happening is necessary. NeoLoad allows the user to create assertions to make sure that
the response of the server is “normal,” (e.g., the content is as expected). For example, receiving “out of
memory” errors in a browser page instead of the requested reports would qualify as unexpected content.
It is important to catch such content errors with the help of assertions.

tricentis.com 21© 2021 Tricentis USA Corp. All rights reserved |

NeoLoad	and	many	load	testing	solutions	will	automatically	capture	HTTP	errors	for	Web	scripts	(e.g.,	500	
“Internal	Server	Error”).	If	only	the	default	diagnostics	are	relied	upon,	it	can’t	be	verified	that	the	business	
transactions are doing what is expected.

New web design tends to avoid HTTP errors and displays exception errors in the applications. So if checking
is limited to examining only the HTTP codes, then it can’t be determined if the scenario is achieving the
expected actions on the application.

Execution

When	executing	the	actual	test,	take	these	challenges	into	consideration:

• Load testing architecture
•	 Effective	test	monitoring

Load testing architecture
The main objective is to load test the application, not the load testing software. Most load testing solutions
have several components:

• Controller:	Orchestrates	 the	 test	 and	 stores	 the	 results	 data	—	 response	 time,	 hit/s,	 throughput,	
monitoring metrics, errors

• Load generator: Runs the load testing script against the application. This component will need to
handle several hundreds of concurrent virtual users.

To avoid being limited by the load testing architecture, there need to be enough:

• Load generators to achieve the expected load
• Network bandwidth between the load generator and the application. Sizing load generators is a crucial
step	in	defining	the	number	of	virtual	users	that	a	load	generator	can	handle.	This	number	of	virtual	
users depends on many aspects:

 – Technologies used in the application to test
 – The complexity of the application to test
 – Network connection capacity

tricentis.com 22© 2021 Tricentis USA Corp. All rights reserved |

Starting a “ramp-up” (or “scalability”) test of the application with one single load generator will help
determine the maximum capacity of one machine. After determining the number of virtual users that one
load generator can handle and the number of virtual users for the test, it is easy to calculate the number
of generators necessary to run the test. To pinpoint the load limits of a load generator, it is necessary to
watch	its	behavior	under	the	ramp-up	test	load,	and	specifically:

• CPU
• Memory
• Throughput
• Hit rate
• Virtual users load

The	first	significant	breaking	point	in	the	CPU,	memory,	throughput,	or	hit	rate	metrics	represents	the	
performance limit of the load generator. This point must be correlated with the number of virtual users
generated. Serious issues may occur with the load generators if pushed beyond this number of virtual
users.

A 20% to 30% security margin out of the sizing limits is recommended for the load generators in a heavy
load test.

It is also important to avoid using the controller machine as a load generator. The controller is the heart
of the test. It is always better to lose a load generator than a controller (the whole test result).

Effective test monitoring

As	mentioned	earlier,	there	is	limited	time	to	run	different	tests	and	proceed	to	monitoring.	Time		shouldn’t	
be wasted by looking at the test data while the test is running.

If response time starts increasing due to web server saturation, stop the test and start tuning the web
server. Almost every time testing is started on a new application and new environment, most of the layers
(application	server,	web	server,	etc.)	are	not	configured	or	tuned	for	the	load	of	the	application.	So	every	
test on a representative environment needs attention from the performance engineer to properly tune
the environment.

Every new test utilizing a new dataset also needs attention. For example, stop the test if every test user is
generating errors when it logs into the application.

tricentis.com 23© 2021 Tricentis USA Corp. All rights reserved |

On the other hand, if there is a good understanding of the application and the environment, test
automation	can	be	started	without	looking	at	the	behavior	of	the	application.	Once	the	test	is	finished,	
analyze the results.

Analysis

Analyzing load testing results is a job in itself. Comprehensive knowledge of the following is required:

• The load testing design
• The technical layers involved in the application
• Modern architecture

This white paper doesn’t explain how to analyze results, but here are some recommendations for reporting
on the project’s performance testing results.

Almost all load testing solutions allow for the creation of complex graphs that correlate data. The
performance	engineer’s	first	inclination	will	be	to	show	all	of	the	graphs	in	the	report.

Before creating this report, however, it is important to understand the role and the technical skills of the
person validating or simply reading the report.

Based	on	these	qualities,	several	different	types	of	reports	can	be	created.	For	example:

• Technical report for developers and operations showing only important graphs
• Decision-maker report giving a very simple status of the application’s performance

The main purpose of the performance testing report is to give a clear status on the performance of the
application.	Results	reports	should	be	simplified,	focusing	on	these	three	main	application	themes:

• Response times
• Availability
• Scalability

A graphical presentation (three pie charts) makes the results easier to understand for the decision-makers.

Ultimately,	the	performance	report	needs	to	highlight	if	the	performance	requirements	(identified	during	
the performance strategy phase) are validated.

tricentis.com 24© 2021 Tricentis USA Corp. All rights reserved |

REFERENCES

Determining The Test Focus Through Risk Assessment, Ross Collard

DISCLAIMER: Note, the information provided in this statement should not be considered as legal advice. Readers are cautioned not to place undue
reliance on these statements, and they should not be relied upon in making purchasing decisions or for achieving compliance to legal regulations.

http://www.performance-workshop.org/documents/Determining_Test_Focus_Thru_Risk_assessment_Collard.pdf

tricentis.com 25© 2021 Tricentis USA Corp. All rights reserved |

Tricentis is the global leader in enterprise continuous testing, widely credited for reinventing
software testing and delivery for DevOps and agile environments. The Tricentis AI-based,
continuous testing platform provides automated testing and real-time business risk insight across your
DevOps pipeline. This enables enterprises to accelerate their digital transformation by dramatically
increasing software release speed, reducing costs, and improving software quality. Tricentis has been
widely recognized as the leader by all major industry analysts, including being named the leader in
Gartner’s	Magic	Quadrant	five	years	 in	a	row.	Tricentis	has	more	than	1,800	customers,	 including	the	
largest brands in the world, such as Accenture, Coca-Cola, Nationwide Insurance, Allianz, Telstra, Dolby,
RBS, and Zappos.

To learn more, visit www.tricentis.com or follow us on LinkedIn, Twitter, and Facebook.

ABOUT TRICENTIS

AMERICAS
2570	W	El	Camino	Real,	
Suite 540
Mountain View, CA 94040
United States of America
office@tricentis.com	
+1-650-383-8329

EMEA
Leonard-Bernstein-Straße 10
1220 Vienna
Austria
office@tricentis.com	
+43 1 263 24 09 – 0

APAC
2-12 Foveaux Street
Surry	Hills	NSW	2010,	
Australia
frontdesk.apac@tricentis.com	
+61 2 8458 0766

v. 0821

http://www.tricentis.com
https://www.linkedin.com/company/tricentis/
https://twitter.com/Tricentis?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.facebook.com/TRICENTIS/

