
Who We Are

Many software teams struggle with automated end-to-end test suites that are flaky and
take significant effort to maintain. When flakiness and poor maintainability are prevalent,
the following issues often emerge:

In this whitepaper, we cover the common drivers of maintainability issues, and provide
actionable advice on how to avoid these pitfalls in your organization.

Tests for new features are built several sprints behind development, or not at all.

Manual testing is required to make up for a lack of sufficient automated test
coverage.

A significant percentage of testers' time is spent updating existing tests.

Testing becomes the bottleneck in the software release cycle.

Reflect (https://reflect.run) is an AI-assisted test automation platform for web
applications. Our platform enables QA teams and engineering organizations to increase
test coverage and catch more bugs without slowing down development velocity.

Being Resilient to Changes in the Application

If there's one constant in software, it's change. To compete in today's environment,
software teams must be agile to customer needs and move fast, with quality. But
what if every change made by a developer risks introducing breaking changes to

Strategies to improve
maintainability and reduce
flakiness in automated regression
tests

REFLECT'S APPROACH

Standardize on an attribute like data-test or data-testid that is added to the
application's HTML markup and is used specifically for test automation.

Define aria-* attributes in your markup and use them as selectors. This provides a
dual benefit of improving test resilience, while making your app more accessible.

For component-based applications, adopt a policy of defining a data-test attribute
at the root of each component definition whose value is the name of the component.

Ensure your underlying testing tool or framework supports the concept of "self-healing"
selectors, so that actions can be performed even when selectors become out of date.

Lack of Stable Selectors

As the application changes, the selectors (also known as Locators) used in the automation
framework become out-of-date.

Reflect generates multiple selectors for each step in a test. Our selector generation
algorithm generates a diverse set of selectors and ranks them according to specificity and
semantic relevance. For React apps, it's even able to locate and target elements based on
its underlying React component name.

Reflect supports self-healing via a Generative AI approach. When selectors become stale,
the Reflect AI uses the description of the test step (e.g. 'Click on the Submit button') to
determine what element on the page can fulfill that action, if any. This approach has proven
to be resilient to even large-scale changes in an application.

Solutions:

your regression test suite?

This is a reality for many organizations. Below are common reasons why false
positive failures occur, and how to mitigate them:

Interactions within a table or grid view are notoriously hard to automate and can
introduce significant flakiness if not handled correctly. This is because tables and
grids are dynamic by nature. Any change to the sorting, filtering, or contents of the
table between test runs can cause tests to fail erroneously.

Be wary of scenarios where elements are accessed in relation to other elements. e.g.
"Click the edit button associated with the row 'John Doe'"

Negative tests can be difficult to accurately test in an automation tool or framework.
For example, a common negative test is to verify that no errors are displayed. But how
can you be sure your automated test is looking for all possible errors?

Ensure your testing tool can easily extract dynamic data from the application under
test for future use. Not all data can be controlled in an AUT, and having the ability
to be resilient to changes to things like pricing and availability helps keep
maintenance costs low.

Expressing Intent

In order to build automated tests that accurately verify the requirements of your
application, it's imperative to use a tool or framework that is capable of expressing the full
range of actions and assertions that fulfill your testing requirements.

Common Pitfalls:

REFLECT'S APPROACH

Reflect is unique in that test steps can be created via record-and-playback features,
JavaScript-based steps, or "prompts" to the Reflect AI (ala ChatGPT).

Using Reflect's record-and-playback features, users can quickly record virtually any
action within a web browser. Code-based steps allows for interactions and assertions
against the underlying state of the page. AI Prompts enable users to perform
actions ("Fill out the form fields with realistic values") and assertions ("Verify that
the amount for this Opportunity is greater than $10,000") by writing plain English
sentences that do not need to conform to any specific syntax.

Hard-coded waits within test automation code (e.g. Thread.sleep(1000)) make
bad assumptions about the performance of the page. In the best case, hard-coded
waits cause the tests to run longer than necessary. In the worst case, they don't
wait long enough and cause false failures that are difficult to debug.

Network calls will vary between runs, and especially in situations where UI behavior
is dependent on a network response, these variations can cause tests to have
unexpected errors. Consider a button on an application that is disabled until an
AJAX request has completed. For the automated test to be resilient to variations
in network timings, it must wait for the AJAX call to complete, or for the button to
be re-enabled, before interacting with the button.

Single-Page Applications (SPAs) render content without a full page load, making
it difficult for some testing tools and frameworks to determine when the page
is interactable.

Applications that utilize animations for page transitions and loading states necessitate
that automated tests are aware of when animations are executing and wait for them
to complete before continuing.

The most complex interactions supported within a web browser are often the most
difficult to automate. If your application supports complex interactions, it's
important to ensure that your testing tool can accurately test them. These interactions
include:

Drag-and-drop

File uploads

Workflows that require interacting with an email or SMS message

Workflows that require verifications against a third-party system

Handling the Complexities of the Web Browser

The web browser is one of the most important, and most complex, pieces of software
that's ever been developed. It also poses significant challenges for test automation due to
the dynamic nature of a typical web application.

Web application performance can vary significant from run to run. These variations
are a major cause of test flakiness unless the automated tests are purposefully
built to be resilient to these changes.

Common Pitfalls:

About Reflect
Reflect is an AI-assisted test automation platform for web applications. Reflect enables
QA teams and engineering organizations to increase test coverage and catch more bugs
without slowing down development velocity.

REFLECT'S APPROACH

Reflect does the heavily lifting under-the-covers to ensure tests are resilient to the
differences in behavior that can occur between test runs. Each test step in Reflect uses
smart waits that wait for an element to be fully visible and interactable before proceeding
with the next action. Reflect also detects when network calls are invoked as a result
of an action, and will wait for those calls to complete before proceeding.

For testing complex interactions, Reflect has best-in-class support for file uploads,
drag-and-drop, and email/SMS testing. Third party integrations can be easily tested
as part of a larger workflow via Reflect's built-in API testing support.

Conclusion

To move fast with quality, software teams must ensure that the pace of testing can keep
up with the speed of development.

A successful test automation strategy requires not only the right approach, but the right
tools. When evaluating your test strategy, pay close attention to whether the issues and
pitfalls outlined in this webinar are occurring, and implement changes in process or
tooling.

For more testing strategy and tips, visit our website at https://reflect.run

