

Vornex Inc.
White Paper

5 Ways to Time Travel Test
A tester’s guide to Temporal Testing

Vornex Inc. 2

What is Time Travel Testing?

Time travel testing is the act of testing date and time

sensitive functionality in order to validate business

rules and logic that exists in a software stack. Other

common names for this type of testing are

• Temporal Testing

• Time Shift Testing

• Forward Date Testing

• Date Simulation Testing

No matter the name, this type of testing is vital in

discovering “date bugs” that exist throughout

applications. These date bugs are platform and

language independent and can exist in any

application. Date bugs are most common in

applications that rely heavily on date & time logic,

such as financial, government, healthcare, energy,

and insurance applications. Common test cases

performed when time travel testing include:

• Enrollment
• Data Aging
• Insurance Rates
• Financial Validation
• Leap Year
• Daylight Savings Time
• End of Year, Month, Quarter
• Policy Forms & Wording
• Utility Rates
• Date & Time Fields
• Transaction Triggers
• Expiration Logic
• Tax Rates & Schemes
• Future Dates
• Billing Cycles
• Loan Repayment

Why Time Travel Test?

Time Travel testing falls in line with every other

aspect of software quality assurance. Its purpose is

to find defects, bugs, and errors with the goal of

increasing software reliability, performance and

functionality for the end user and company. This

benefits your company as you reduce your exposure

to the risk of production failures and down time

which could result in potential loss of customers or

revenue.

In addition, your organization may have critical

governance, risk, and compliance initiatives to

ensure optimal quality of customer facing software

products. And depending on your industry, there

may be government regulation requiring the testing

of date sensitive functionality.

In the United States there exists a government

insurance commissioner regulation that insurance

companies must comply with in order to not be

penalized. To meet this compliancy, companies

must ensure their issued policies are completely

accurate before issuing them. If date discrepancies

occur and policies are out of compliance, penalties

are issued against the insurer.

By incorporating temporal testing into your

organizations software test cycle, you can fully

ensure your critical date sensitive business rules are

free of date bugs and your software is reliable.

Historical Bugs

When time travel is not incorporated into the testing

cycle, bugs and software defects are introduced into

the application and can cause varying amounts of

3 5 Ways to Time Travel Test

damage. When the damage is large enough, it can

affect critical functionality and become news worthy.

Below are historical examples of date bugs.

1) National Australia Bank’s health payment

system crashes by Leap-Year bug, blocking

150,000 customers from conducting medical

transactions & processing payments. [1]

2) Microsoft’s Cloud Platform Azure offline for

over 12 hours due to Leap-Year bug. [2]

3) VMware ESX update introduces date-bug

which blocks all virtual servers from starting

up, disabling customer’s infrastructure. [3]

4) Thousands of Bank of Queensland Point of

Sale Terminals crash from rollover date-bug,

rejecting customer debit cards. [4]

Moving forward, more critical dates will occur that

require compliancy and testing. The most famous

being the “Year 2038”. This problem (similar to Y2K)

is where UNIX’s 32bit representation of time maxes

out at the year 2038 and anything beyond will cause

an overflow and roll back to 1901. This affects file

systems, databases, languages, and other

technology using 32-bit time representations. Thus,

companies will need to time travel test in order to

ensure 2038 compliancy.

Time travel is an important part of the quality

assurance test cycle to ensure software reliability. In

order to perform time travel testing an organization

must pursue one of five options available today.

Option 1: Manually Shifting Server Time

This method involves manipulating the operating

system clock via the system settings in order to time

travel the server. Although straight forward on your

personal laptop, in a large enterprise & corporate

setting this is vastly time, cost, and resource

intensive as no test automation is used. It typically

requires

- Environment-Wide Coordination

- Management Approval

- User downtime

- System and Database Administer assistance

- Administrative permissions granted to local

users, going against basic security practices

Once the manual time shift test is complete and the

server time is set back to present time, a series of

challenges and additional work exist. Specifically,

your operating system files & timestamps will be

corrupted with invalid dates, thus destroying

backups, batch jobs, tasks, etc. This damage and

the overall system confusion ultimately lead to the

need to restore your entire OS and application back

to their original state.

Each of these can take hours to days, all while users

are offline and other testing is halted. Plus, you are

limited to only testing one date-window at a time,

slowing down your test cycle.

In addition, if the environment is contained within a

domain authentication protocol, like Active Directory

or Kerberos, then you cannot change the system

clocks as these protocols rely on server times being

in sync. If servers are not aligned within 5 minutes or

less, servers get kicked off of the domain, thus

blocking you from shifting time.

[1] http://www.smh.com.au/business/leap-year-blamed-for-hicaps-stumble-20120229-1u1z7.html
[2] http://www.wired.com/2012/03/azure-leap-year-bug/
[3] http://www.infoworld.com/d/virtualization/vmware-licensing-bug-blacks-out-virtual-servers-982
[4] http://www.smartcompany.com.au/growth/economy/12681-20100104-businesses-hit-by-bank-of-queensland-eftpos-bug.html

http://www.smh.com.au/business/leap-year-blamed-for-hicaps-stumble-20120229-1u1z7.html
http://www.smh.com.au/business/leap-year-blamed-for-hicaps-stumble-20120229-1u1z7.html
http://www.wired.com/2012/03/azure-leap-year-bug/
http://www.wired.com/2012/03/azure-leap-year-bug/
http://www.wired.com/2012/03/azure-leap-year-bug/
http://www.infoworld.com/d/virtualization/vmware-licensing-bug-blacks-out-virtual-servers-982
http://www.infoworld.com/d/virtualization/vmware-licensing-bug-blacks-out-virtual-servers-982
http://www.smartcompany.com.au/growth/economy/12681-20100104-businesses-hit-by-bank-of-queensland-eftpos-bug.html
http://www.smartcompany.com.au/growth/economy/12681-20100104-businesses-hit-by-bank-of-queensland-eftpos-bug.html

Vornex Inc. 4

Pros

- No 3rd party tools required
- Intuitive

Cons

- System Files & Timestamps Corrupted

- OS & Application restores

- Takes a large amount of time

- Active Directory & Kerberos Lockout

- Higher costs & resources required

These limitations lead companies to explore option 2.

Option 2: Isolate Servers

When companies utilize domain authentication

protocols like Active Directory or Kerberos, testers

are unable to manually shift server times without

being kicked off the domain, thus blocking their

testing. This leads to the option of purchasing

additional servers, isolating them from the domain,

and then manually shifting the server time. However,

this approach requires the increase of capital

expenditure and server maintenance as you scale

your hardware & software in order to create a

secondary environment dedicated to date shifting. In

addition, with this new environment under a different

security context, it differs from production and thus

reduces the validity of your test cycle.

Pros

- No 3rd party tools required
- Intuitive
- Dedicated time travel environment

Cons

- Increased hardware and software

- Increased deployment, maintenance, &

human costs and resources

- Test environment differs from production

- Same challenges as “Manual Time Shift”

Option 3: Hardcoding

Hardcoding means utilizing the organization’s

software engineers to hand-code a time travel test

harness into the application code (such as with

COBOL intrinsic functions or custom-stored

database procedures). However, this approach has

inherent disadvantages:

• Increased lines of code which equals increased

development & maintenance costs plus the risk

of introducing software bugs.

• QA degradation as testers are dependent on

developers to do work out of their scope

• Struggle to ensure temporal consistency for

distributed applications spanning multiple

departments, environments, & platforms.

The biggest roadblock for hardcoding is the

developers having access and availability to the

source code of the entire software stack of the

organization. For a multi-tier, distributed application

stack containing popular 3rd party enterprise

software like Oracle, SAP, WebSphere, SQL Server,

etc., attaining the source code is impossible as they

are proprietary to each vendor, thus preventing a

developer from hardcoding a complete test harness.

Pros

- No 3rd party tools required
- You own the time travel test harness
- Built-in automation

Cons

- Increased lines of code

o Development & maintenance

costs + risk of bugs

- Time & resource drain for developers

- Unable to time travel 3rd party apps

5 5 Ways to Time Travel Test

Option 4: Not Testing

Due to the complexities of trying to time travel an

enterprise stack, an option is to simply not time

travel test and hope date bugs do not exist in the

application once in general release. However, the

risk is too high for damage, making this not a viable

option for companies who have shareholders,

customers, and regulatory standards which expect

the highest quality of product & service.

Pros

- No 3rd party tools required

Cons

- Risk of live date bugs

- Possible application downtime

- PR nightmare

- Potential loss of customers, revenue, &

shareholder confidence

These expectations and standards lead many

companies to pursue option 5, test automation tools.

Option 5: Test Automation Tools

The easiest and best way to perform temporal

testing is through a 3rd party software tool. They

exist for all platforms like Windows, Linux, Solaris,

AIX, HP-UX, HP-Nonstop, AS/400, z/OS. These

tools provide efficient & instant time travel.

Pros

- Instant Time travel
- Find and fix all date bugs
- Expedite test cycle
- Save time, money, & resources
- Reduce hardware & software costs
- Free up organizational resources.
- Enable time travel in locked environments

Cons

- Cost

One of the leading tools available is TimeShiftX®.

Solution - TimeShiftX

TimeShiftX is a date and time simulation software

that allows organizations to time travel enterprise

applications and databases in the future or past to

validate all date and time sensitive functionality.

TimeShiftX provides “virtual times” to enable safe

and instant time travel, thus expediting the validation

of applications while reducing the resources and

time needed to complete testing.

TimeShiftX enables time travel (even inside Active

Directory & Kerberos) without changing system

clocks, editing code, or isolating servers with

features including…

• Instant Time Travel

o No code changes, no altering server

clocks, no isolating servers, no system

impact. Just turn on TimeShiftX & begin

temporal testing.

• Active Directory Compatibility

o Safely time travel inside Active

Directory, Kerberos, LDAP, and other

domain authentication protocols.

• Secure time travel
o No outside network calls performed

• Total App & DB Compatibility

o TimeShiftX enables time travel for all

applications & databases (SAP, SQL,

Oracle, WebSphere, DB2, .NET, etc.)

• Cloud, Container, & Cross Platform Time Travel

Vornex Inc. 6

o TimeShiftX is compatible on all

operating systems and can be run in

containers like Dockers or in clouds

such as Azure and AWS.

• Distributed Environment Time Shifting

o TimeShiftX allows you to easily temporal

test large, distributed software stacks

from a single click.

TimeShiftX eliminates all the challenges with time

travel testing and empowers companies to validate

all date & time sensitive business rules instantly and

seamlessly, thus increasing software reliability

through automation while providing time, resource,

and cost savings.

The TimeShiftX solution is deployed worldwide

across clients who extend many industries including

Banking, Finance, Healthcare, State & Local

Government, Energy, and Insurance. Companies

leveraging TimeShiftX include: Liberty Mutual,

Lloyds Banking Group, Deutsche Bank, State of

California, Nationwide Insurance, BNP Paribas,

UnitedHealthcare, Mastercard, Gazprom and many

others.

Companies choose TimeShiftX to meet deadlines,

eliminate date bugs, save money, and reduce their

exposure to the cost overruns and risk of unfound

date bugs.

For more information

To learn more about TimeShiftX or to arrange a

demo please visit: www.vornexinc.com or email

info@vornexinc.com

© Copyright 2018 Vornex Inc. The information contained herein is subject to change without notice. The only warranties for Vornex products
and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. Vornex shall not be liable for technical or editorial errors or omissions contained herein. Microsoft and
Windows are U.S. registered trademarks of Microsoft Corporation.

https://www.vornexinc.com/
mailto:info@vornexinc.com

