
84
D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

1

WHAT IS CONTINUOUS INTEGRATION?
Conventionally, the term "Continuous Integration" refers to the

"build and test" cycle. Individual developers merge their code into

one shared project master branch. CI servers rebuild the project

from scratch every time a code merge happens.

Conversations about Continuous Integration tend to couple CI

with Continuous Delivery (CD). CD differs from CI by referring to

the movement of code from one environment to another, such

as development to QA to User Acceptance Testing. CI servers will

usually do CD as well. The two concepts are inexorably linked since

they work hand in hand. There are other DZone Refcardz that you

should consider downloading if you wish to understand Continuous

Delivery better, such as, "Preparing for Continuous Delivery" or

"Continuous Delivery: Patterns and Anti-Patterns in the Software

Lifecycle". This Refcard is going to focus specifically on CI patterns,

although there will occasionally be some overlap since the two are

so closely related.

WHY DOES CONTINUOUS INTEGRATION MATTER?
Continuous Integration benefits any organization that implements it

correctly. Some of the key benefits are:

• Better Quality Code - Code that makes it into the project's

master branch is of a consistent quality. The automated CI

system will perform code checking and code linting as part

of the merge and build process.

• Better Tested Code - Unit tests, end-to-end tests, and code

coverage reports can be run automatically to ensure all tests

pass and code coverage does not slip.

• Production Snapshot - Building from scratch means that the

build on QA is going to be the same on UAT, which is going to

be the same as production.

• Early Error Detection - Code that passes all the linting, unit

tests, and e-2-e tests can still fail to build for unexpected

reasons. A build failure is identified immediately after the code

is merged in, making it easy to identify the broken commit(s).

• Project Confidence - All of this adds up to increased confidence

in the product from developers, managers, and customers.

CI needs to be implemented properly to reap these benefits.

Everything starts from the point of change. Every time a change is

merged into the master branch, then a build job must be run.

BROUGHT TO YOU IN PARTNERSHIP WITH

CONTENTS

 ö WHAT IS CONTINUOUS

INTEGRATION?

 ö PATTERNS AND ANTI-PATTERNS

 ö BUILD MANAGEMENT

 ö BUILD PRACTICES

 ö BUILD CONFIGURATION

 ö DATABASES

 ö TESTING AND CODE QUALITY

WRITTEN BY PAUL DUVALL, CTO AND CO-FOUNDER, STELLIGENT

UPDATED BY DAVID POSIN, SENIOR SOFTWARE ENGINEER AT SILICON PUBLISHING, INC

CI Patterns and
Anti-Patterns

Code, collaborate,
secure, and ship.
Faster

45-Day Free Trial

https://quay.io/plans/
https://dzone.com/refcardz/preparing-continuous-delivery
https://www.amazon.com/Executing-Data-Quality-Projects-Information/dp/0123743699
https://www.amazon.com/Executing-Data-Quality-Projects-Information/dp/0123743699
https://enterprise.github.com/trial#utm_source=Dzone&utm_medium=box%20ad&utm_campaign=JustMedia%20q4%20150K

Build and ship software
faster with the largest open
source developer community.

45-Day Free Trial

Code, collaborate,
secure, and ship. Faster.

GitHub Enterprise

https://enterprise.github.com/trial#utm_source=Dzone&utm_medium=full-page%20ad&utm_campaign=JustMedia%20q4%20150K

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

3

CI PATTERNS AND ANTI-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

PATTERNS AND ANTI-PATTERNS
Patterns, and corresponding anti-patterns, are discussed in the

following sections. According to Google trends, the most searched

for version control tool is Git and the most commonly searched CI

software is Jenkins.

Google Trends

Google Trends

Where examples are provided, we will use the Git Command Line

Interface commands or Git Plugin hooks for Jenkins. This Refcard

will use those two technologies for examples based solely on

search popularity.

BUILD SOFTWARE AT EVERY CHANGE
One of the most important patterns to remember when talking

about CI is to build the project every time a change is merged into

master. Traditionally, the project is built on an arbitrary schedule,

such as nightly or every weekend. Scheduled builds are an anti-

pattern for CI.

One of the goals of building after every code merge is to

immediately identify when problems occur. If the newly merged

code causes the build process to fail, then developers know which

section of code to examine. If builds are scheduled and an error

occurs, the exact code change might not be obvious, and fixing it

could require significant digging.

A Continuous Integration system should be set up with:

• A shared version control repository (i.e. Git).

• An automated build script or CI server configuration to run

when the repository has changed.

• Some sort of feedback mechanism (such as e-mail or chat

software).

PATTERN
Run a software build with every change

applied to the Repository.

ANTI-PATTERNS

Scheduled builds, nightly builds, building

periodically, building exclusively on

developer's machines, not building at all.

VERSION CONTROL [1]

Versioning is one of the central pillars of CI. A good version control

system (VCS) will maintain a core functioning codebase. Developers

can then build off that main codebase by creating code branches

to add features, fixes, and patches without affecting anyone else.

Developer branches can then be merged into the main code branch,

called mainline or master, when complete.

Here are some important best practices to consider when working

with a version control system:

• Private Workspace - Developers should be working on

their own machines (real or virtual) with local copies of

the repository. Developers should not be working over file

systems that allow them to share the same code files, or on

the machine serving as a repository host (if the repository is

not cloud-based).

• Repository -- In line with the point above, all code should be

hosted in a repository. No successful Continuous Integration

plan will work with a file system hosted project.

• Master - The main branch from which builds are run should

be the master, or mainline, branch. This branch should be

heavily protected. Developers should be able to merge code

into the master branch but should not be able to commit

code directly. The master branch will host your project's

main history and milestone builds. No code should ever be

added to it directly.

• Branching Policy - All teams working on a CI process should

have an agreed-upon branching policy. Developers should

branch off of master using a naming convention agreed

upon by the team. Code should be merged into master

from individual developer branches through pull requests,

or some other agreed-upon mechanism. Branches should

be pushed to the repository just like master so they can be

shared if needed.

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

4

CI PATTERNS AND ANTI-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

TASK-LEVEL COMMIT
Most modern version control software integrates this best practice

into its core functionality. A developer moves code into the VCS

when they have made enough progress to consider saving it. Usually

the process involves adding the changed code files to a commit, and

then committing them with a relevant message.

For example, in Git, a task-level commit uses the following commands:

git add -A
git commit -m "message" (i.e., git commit -m "added
file object class")
git push

PATTERN

Organize source code changes by task-
oriented units of work and submit changes as
a Task-Level Commit.

ANTI-PATTERNS

Keeping changes local to development
for several days and stacking up changes
until committing all changes. This often
causes build failures or requires complex
troubleshooting.

LABEL BUILD
When master has reached an important development or release

milestone, give it a name to mark that code state. Typically, this will

be, or will incorporate, the release version number using semantic

versioning (major.minor.patch, i.e. 1.10.23).

Git uses the term "tagging" instead of "labeling". To create a tag for

the current build, use the following commands:

git tag -a annotation -m "message" (i.e., git tag -a
v1.2.12 -m "version 1.2.12")
git push remote --tags

PATTERN

Tag or Label the build with unique name so

that you can refer to run the same build at

another time.

ANTI-PATTERNS
Not labeling builds, using revisions or

branches as "labels."

BUILD MANAGEMENT
Code being merged into master should cause the CI server to

automatically build the project, including the new changes. There

should be no developer or DevOps engineer involvement required.

AUTOMATED BUILD
There should be hooks in the version control system or polling

in the CI system to force a new build when master changes. It is

important that builds happen after every merged code change so a

breaking commit can be identified immediately. Developers should

not be expected to kick off CI builds manually to avoid impacting

development progress.

Setting up an automatic build between Git and Jenkins uses the

following procedure. Inside the project's .git directory, update the

hooks/post-receive file to send the repository to your CI tool (in this

case Jenkins). Your CI tool should be installed with a Git plugin to

accept the curl.

curl http://yourserver/git/notifyCommit?url=<URL of the
Git repository>[&[,branch2]*][&sha1=<commit ID>]

PATTERN

• Automate all activities to build

software from a source without manual

configuration.

• Create build scripts that will be executed

by a CI system so that software is built at

every change.

ANTI-PATTERNS

Continually repeating the same processes

with manual builds or partially automated

builds requiring numerous manual

configuration activities.

BUILD PRACTICES
PRE-MERGE BUILD
The automated build discussed above occurs on the CI server using

shared resources. VCS systems can be configured to perform a fast,

stripped-down build locally first to pre-check the code.

The procedure in Git works using the project's .git directory. Update

the hooks/pre-push file to run the CLI command for your project's

build/compilation/bundling tool. For example, a JavaScript or Node

project might use a tool called Gulp:

gulp <my project>

PATTERN

Verify that your changes will not break the

integration build by performing a pre-merge

build---either locally or using Continuous

Integration.

ANTI-PATTERNS

Checking in changes to a version-control

repository without running a build on a

developer's workstation.

CONTINUOUS FEEDBACK
The results of a build are of special importance to the developer

submitting the revised code. It is important that they are aware

of the results as soon as they are available. Positive and negative

results are both important and developers should be trained

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

5

CI PATTERNS AND ANTI-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

to watch for all feedback before moving on to other tasks. The

method(s) of providing feedback will vary depending on your

organization's infrastructure. Methods to consider include:

• Email

• Hipchat

• Slack

• SMS

• Web Push Notifications

• Campfire

• Any infrastructure tool with extensions that your

organization uses

PATTERN

Send automated feedback from the CI server

to development team members involved in

the build.

ANTI-PATTERNS

Sending minimal feedback that provides

no insight into the build failure or is non-

actionable. Sending too much feedback,

including to team members uninvolved with

the build. This is eventually treated like spam,

which causes people to ignore messages.

EXPEDITIOUS FIXES
Mistakes will happen and occasionally code will make it into master

that breaks the build. The responsible pattern is to be ready to

handle and resolve the problem immediately. The worst possible

way to handle a failure in a build is to ignore it, or expect it to

be resolved in a future build. You should consider taking all the

following steps:

• Fix Broken Builds Immediately - Although it is the team's

responsibility, the developer who recently committed code

must be involved in fixing the failed build. It is possible the

problem was a result of a lack of knowledge, so it is a good idea

to have a seasoned developer available to assist if needed.

• Always Pull Master and Build - Developers should pull the

latest code into their branch from master before pushing

committed code. After pulling master into their own branch,

they should run unit tests and build locally to ensure nothing

pulled from master breaks their code. This also allows the

developer a chance to fix conflicts that result from the merge

before the merge gets to master.

• Don't Pull Broken Code - If master is broken, notify the

team. Developers should avoid pulling master into their

own branch while it is broken. Development time could be

wasted by other developers struggling with bad code that

will be changed shortly.

PATTERN Fix build errors as soon as they occur.

ANTI-PATTERNS
Allowing problems to stack up (build entropy)

or waiting for them to be fixed in future builds.

DEVELOPER DOCUMENTATION
The build process is an excellent opportunity to generate

documentation for your source code. Developers tend to dislike

writing documentation manually, and keeping documentation up

to date manually can be time-consuming. The preferred approach is

to incorporate documentation into your code, and then having the

build process generate documentation from the code. This keeps

documentation up-to-date and does not create more work for the

development team.

PATTERN
Generate developer documentation with

builds based on checked-in source code.

ANTI-PATTERNS

Manually generating developer

documentation. This is both a burdensome

process and one in which the information

becomes useless quickly because it does

not reflect the checked-in source code.

BUILD CONFIGURATION
INDEPENDENT BUILD
Builds should happen the same way on all machines that run them.

A build on a developer machine should run the same procedure as

the CI server. Therefore, train developers to not use the IDE build

process. Instead, the IDE can be configured to run the required build

scripts so that building can still happen from the IDE. Every project

should include its own build scripts so it can be built from anywhere

it is being worked on.

PATTERN

Create build scripts that are decoupled from

IDEs, but can be invoked by an IDE. These

build scripts will be executed by a CI system as

well so that software is built at every change.

ANTI-PATTERNS
Relying on IDE settings for Automated Build.

Build cannot run from the command line.

SINGLE COMMAND
Running a project build should be as simple as possible. It is best

to have a simple CLI command that can run everything required for

a build in the correct order. This ensures that both developers and

servers use the exact same code in the exact same order. A single

command-invoked build script can also be kept up to date with the

current state of the project.

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

6

CI PATTERNS AND ANTI-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

Build, compile, and testing phases can be time consuming for a

developer. In order to support the development team, provide flags

on the CLI command to limit the build process to fit their needs. For

example, a developer might be updating a class and only needs

to compile the code. They are not at a point where they need to

test and build the whole project. The script could take a flag, such

as --compileonly, to only perform the compilation process, but this

way there are not individual commands for developers to know.

Everything goes through the same single CLI command.

PATTERN
Ensure all build processes can be run

through a single command.

ANTI-PATTERNS

Requiring people or servers to enter

multiple commands and procedures in the

deployment process, such as copying files,

modifying configuration files, restarting

a server, setting passwords, and other

repetitive, error-prone actions.

DEDICATED RESOURCES
CI builds of master should be performed on servers (real or virtual)

that are only tasked with building the project. These dedicated

machines should have sufficient resources to build the project

smoothly and swiftly to limit developer downtime. Performing

builds on a dedicated machine ensures a clean environment that

doesn't introduce unexpected variables. Clean builds give a certain

degree of reassurance that the project will build successfully when

being deployed to other environments.

PATTERN
Run master builds on a separate dedicated

machine or cloud service.

ANTI-PAT-

TERNS

Relying on existing environmental and

configuration assumptions (can lead to the "but it

works on my machine problem").

EXTERNALIZE AND TOKENIZE CONFIGURATION
Configuration information that is specific to a machine or deployment

environment should be a variable in any build and configuration

scripts. These values should come from the build process so they

can be build or environment specific. Files that use this information

should use tokens so that the build process can replace them with

actual values. For example, a build might be supplied a hostname,

then any configuration file that needs hostname should use

$hostname for that value. The build process will go through all config

files and replace $hostname with the correct value every time the

server is built. This lets the build process create the project on as

many different machines as possible.

PATTERN

• Externalize all variable values from the

application configuration into build-time

properties.

• Use tokens so the build process knows

where to add variable values.

ANTI-PATTERNS
Hardcoding values in configuration files or

using GUI tools to do the same.

DATABASE
Databases are the cornerstones of all modern software projects. No

project of any scale beyond a prototype can function without some

form of database. For this reason, databases should be included in

the Continuous Integration process. They should be treated with the

same extensibility and care as project software code.

SCRIPTING DATABASE CHANGES
All changes made to a database during development should be

recorded via database scripts. The CI process can then run scripts

as the project is built. It is an anti-pattern to expect any manual

manipulation of a database during the build process. A database for

the project should be able to be migrated to new changes regardless

of timing or platform.

PATTERN

All changes made to a database during

development should be recorded into

database scripts that can be run on every

database on every platform hosting the project

(including developer machines, see below).

ANTI-PATTERNS

Expecting database administrators to

manually compare databases between

platforms for changes, or to create on-off

scripts that are only good for updating a

single platform.

DATABASE SANDBOX
Every instance of the project should have its own version of the

database with a relevant set of data. This should include development

machines, build machines, testing machines, testing servers, and QA

machines. No individual or server working with the project should

have to worry about the integrity of their data, or the integrity of some

other entity's data, while coding, building, and testing.

This is true of schema, but not necessarily data. The data for each

environment should be a subset of the whole, and scrubbed of

sensitive information. For example, a developer should have

access to a lightweight version of the database with a very small

subset of records. However, the data they do have shouldn't have

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

7

CI PATTERNS AND ANTI-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

real social security numbers, addresses, etc. Use discretion and

ahere to any relevant regulations when deciding what data to use

for database population.

The CI process should include a way to import the data correctly into

the database. Any data import or manipulation should be scripted

so it can be performed via command line. Developers, testers, and

build machines shouldn't have to know the intricacies of the data.

The build process in particular will need a command line command

to call during the build.

PATTERN

• Create a lightweight version of your

database (only enough records to test

functionality)

• Use a command line interface to populate

the local database sandboxes for each

developer, tester, and build server

• Use this data in development

environments to expedite test execution

ANTI-PATTERNS Sharing development database.

UPDATE SCRIPTS STORED IN THE VCS
All scripts to perform database and data operations should be stored

in the version control system being used by the codebase. Scripts

should be named and/or annotated to refer to their appropriate

version number to simplify automation. Keeping old versions is

useful for doing multiple scripts if necessary, and to maintain a

history of changes.

PATTERN

Store the scripts for updating the database

and its data in the version control system with

the code and annotate appropriately

ANTI-PATTERNS
Storing update scripts in an alternative

location, i.e. a shared file server

TESTING AND CODE QUALITY
The sometimes rapid pace of Continuous Integration can feel

daunting in the beginning, but it becomes comfortable very quickly.

One of the reasons for that is testing. Testing and code quality

validation are a massively important part of CI. Tests running with

every build ensures that nothing has been broken and that the code

is maintaining superior quality. CI cannot be successful without a

robust testing method. Without testing, CI can become chaotic.

AUTOMATED TESTS
Tests should run with every build. The build scripts described in

the sections above should include running tests against all code in

the project. Tests should be as comprehensive as possible and can

include unit tests, end-to-end tests, smoke tests, or UI tests.

Testing should be done on all new code. Tests for new code should

be a requirement of a successful build. All code being merged

into the project should be required to meet an appropriate code

coverage level. All modern test running suites will have some form of

coverage reporter that can be tied into the build process. Any code

submitted without sufficient test coverage should fail.

PATTERN
Write automated tests for each code path,

both success testing and failure testing.

ANTI-PATTERNS

• Not running tests

• No regression testing

• Manual testing

BUILD QUALITY THRESHOLD
The build is also an appropriate time to check for code quality and

coverage percentages. The project team should have a minimum

coverage percentage that the project is not allowed to dip below. If

new code is merged in without sufficient tests, that percentage will

be lower than expected, and that should trigger a failure.

Code quality is important to the long-term maintainability of a

project, and the build step is a great place to verify code quality. The

project team should have standards and best practices for the code

so most of it looks and works the same way. The build step should

verify that new code meets those standards.

PATTERN

• Notify team members of code aberrations

such as low code coverage or the use of

coding anti-patterns.

• Fail a build when a project rule is violated.

• Use continuous feedback mechanisms to

notify team members.

ANTI-PATTERNS

• Deep dive reviews of every code change.

• Manually calculating or guesstimating

code coverage.

AUTOMATED SMOKE TEST
Smoke tests are a subset of tests used to confirm the functionality

of the most important elements of a project. They function as

gatekeeper to confirm that building, full testing, or QA can continue.

A suite of well-designed smoke tests can save QA personnel time

and effort by checking the most likely candidates for failure first.

This is also useful for Continuous Deployment. Smoke tests can be

designed to check functionality most sensitive to changes in the

environment. It is an easy way to confirm that the deployment will work.

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

8

CI PATTERNS AND ANTI-PATTERNS

BROUGHT TO YOU IN PARTNERSHIP WITH

PATTERN

Create smoke tests that can be used by CI

servers, developers, QA, and testing as a

pre-check to confirm the most important

functionality as they work, or before

committing resources to a full build.

ANTI-PATTERNS

• Manually running functional tests.

• Forcing QA to run the full suite before

every session

• Manually checking deployment sensitive

sections of the project

 [1] Addison-Wesley, Software Configuration Management Patterns,

2003, Berczuk and Appleton.

DZone, Inc.

150 Preston Executive Dr. Cary, NC 27513

888.678.0399 919.678.0300

Copyright © 2018 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

DZone communities deliver over 6 million pages each

month to more than 3.3 million software developers,

architects and decision makers. DZone offers something for

everyone, including news, tutorials, cheat sheets, research

guides, feature articles, source code and more. "DZone is a

developer’s dream," says PC Magazine.

Written by David Posin, Senior Software Engineer at Silicon Publishing, Inc.

David Posin has been involved in the Information Technology Industry for two decades. Fifteen years of that time

was spent consulting with many companies in a wide range of industries to build solid technology stacks and robust

application architectures. David has watched the Cloud and the World Wide Web grow from their infancy, and now

spends every day fully entrenched in those worlds. Currently, David builds high-performance web applications and

offers professional technical writing services.

http://dzone.com/refcardz
http://www.dzone.com

