
© 2019 Parasoft Corporation1

How to Choose
the Right
Service
Virtualization
Solution

Key Capabilities to make your Organization
Successful in Today’s Testing Environments

© 2019 Parasoft Corporation2

What is service virtualization?

An effective way to simulate dependent services that are out of your control

for testing, service virtualization is a key enabler to any test automation project.

By creating stable and predictable test environments, your test automation will

be reliable and accurate. But there are several different approaches and tools

available on the market. What should you look for in a service virtualization

solution to make sure that your maximizing your return on investment?

Use this guide to help you identify the key features and capabilities needed for your

successful enterprise deployment and adoption of service virtualization. It’s more important

than ever to choose a solution that’s right for you and your organization.

THE SERVICE VIRTUALIZATION TOOL LANDSCAPE

The service virtualization tooling landscape breaks down into two types of service virtualization solutions:

Lightweight Tools

Free or open-source tools (i.e. Traffic Parrot, Mockito) are

great tools to start with because they help you get started

in a very ad hoc way, so you can quickly learn the benefits

of service virtualization. These solutions are usually sought

out by individual development teams to “try out” service

virtualization, brought in for a very specific project or reason.

The downside of the lightweight tools is they struggle to

garner full organizational traction because they lack the

breath of capability and ease-of-use required for less

technical users to be successful. Additionally, while these

tools are free in the short term, they become more expensive

as you start to look into maintenance and customization.

Enterprise Tools

More heavyweight tooling is available through vendor-

supported tools, designed to support power users that want

daily access to create comprehensive virtual services. These

solutions are often designed with deployment and team

usage in mind.

When an organization wants to implement virtualization as

a part of their continuous integration and DevOps piepine,

enterprise solutions integrate tightly through native plug-ins

into their build pipelines. Additionally, these solutions can

handle large volumes of traffic while still being performant.

Obviously, these solutions are not free, so an organization

needs to make the right decision when moving into this level

of usage.

SO HOW DO YOU CHOOSE THE SOLUTION THAT’S RIGHT FOR YOU?

Most organizations won’t self-identify into a specific tooling category such as lightweight or enterprise, but rather

have specific needs from their solution. The honest answer is that you need the best of both of these worlds, so

the best way to choose a service virtualization solution that’s right for you is to look at the different features and

capabilities that you may require and ensure that your tooling choice has those capabilities. Additionally, you may

identify other areas of capability that you may need in the future. Use this guide as a checklist to determine those

capabilities that are most important to you now, and in the future.

© 2019 Parasoft Corporation3

Ease-of-Use and Core Capabilities

✓ SCRIPTLESS FUNCTIONALITIES

For optimal ease-of-use, you should be able to build virtual

services without having to write any code. A visual tooling

system is best for this because quite often the person who

requires a virtual service will not be the person who originally

developed the service and will not have intimate knowledge of

its implementation.

This is important to think about because you will be

implementing a lot of business logic into your virtual services, in

order to make sure they behave like the real services. Having a

visual tooling system allows you to easily approach that task, as

well as easily share the implementation with a broader audience

because it will be easier to understand. Everybody’s coding

style is different, and with a purely code-driven implementation

it’s difficult to look at the virtual service and understand what

it is doing. With a scriptless visual system, you can grasp its

concept and borrow pieces of the implementation in a much

easier way.

Having a solution that’s intuitive and scriptless also enables

a large body of non-technical users to build the right virtual

services quickly. By reducing the reliance on a strictly coded

implementation, non-developers will be able to help build

virtual services, fostering a shift-left approach to virtualization

usage and helping it become widely adopted much quicker.

✓ ABILITY TO RAPIDLY CREATE VIRTUAL
SERVICES BEFORE THE REAL SERVICE IS
AVAILABLE

Virtual services can be leveraged as prototypes, which is a very

powerful usage of virtualization. This means creating interfaces

for dependent components of your application before they are

available. Since you won’t be able to use record-and-playback

to create these, your service virtualization solution must be

able to create virtual services from service definitions such as

WSDL, Swagger, Open API (OAS3), schema, example payloads,

and so on.

With this capability, you can spin up virtual services as soon

the service definitions have been created, enabling a strategy

in which developers can build the virtual services as they are

building the real services, so that parallel development can

take place and out-of-sync agile development doesn’t become

a blocker.

Another powerful part of creating the service before it is

available is for test driven development (TDD). Testers can

create a simulation of what the service will be, and then start

to develop their tests against it so that as the service becomes

available, they get a jumpstart on their test automation.

✓ SCRIPTLESS FUNCTIONALITIES

✓ ABILITY TO RAPIDLY CREATE VIRTUAL
SERVICES BEFORE THE REAL SERVICE IS
AVAILABLE

✓ INTELLIGENT RESPONSE CORRELATION

✓ DATA-DRIVEN RESPONSES

✓ ABILITY TO RE-USE SERVICES

✓ A CUSTOM EXTENSIBILITY FRAMEWORK

✓ SUPPORT FOR AUTHENTICATION AND
SECURITY

✓ CONFIGURABLE PERFORMANCE
ENVIRONMENTS

✓ SUPPORT FOR CLUSTERING/SCALING

© 2019 Parasoft Corporation4

✓ INTELLIGENT RESPONSE CORRELATION

Intelligent response correlation means that a virtual service can

respond differently depending on the request coming in. The

different types of response correlation must be considered:

Deployment correlation:
Each virtual service should be deployed on individual (or

multiple) listeners (HTTP, MQ, JMS, TCP, Kafka, etc). An

individual virtual service should only pick up messages that are

meant for it, so your virtualization solution should be able to

discern different messages coming to different queues/paths.

Message correlation:
As individual messages come in, you may have different

operations or resources that should be acted on differently.

For example, “add account” and “update account” should go to

different pieces of response logic, so your service virtualization

solution should be able to analyze the incoming message for

patterns and route the messages appropriately.

Data source correlation:
Once the message has been routed to the appropriate response

object, you may want to further slice and dice the message

depending on key information in the request. A good example

of this would be responding differently to various customer

accounts. You may have 100 different accounts that have

different types of response bodies, and you don’t want to create

a response object for every single ID, so your virtualization

solution needs to be able to correlate on data in the incoming

request and look it up in a data source for response.

✓ DATA-DRIVEN RESPONSES

Your virtualization solution should be flexible, so you can

create the logic in an abstracted way from the data. Data-

driven responses allow you to connect your virtual services

to data sources (i.e. excel, CSV, tabular, hierarchical, and even

connecting to live databases for real-time data lookups).

Data will be one of the most important pieces of your virtual

service because it will be changing all the time. With the ability

to parameterize response data in an external file, your virtual

services will become more flexible, as well as provide you

with the ability to offload some of the response logic into the

data source so that it can be handled by the QA or Test Data

Management team.

You should also be able to leverage dynamic data sources. An

example of this would be if you had transient data provided to

your service as a lookup, like an order number, you would want

to be able to respond back with the appropriate data even if

it didn’t exist in your data source. By pulling dynamic data at

runtime, as well as storing that data in a stateful way, you will

be able to create flexible virtual services that aren’t hindered

by static data.

✓ ABILITY TO RE-USE SERVICES

In order to define core, common, or shared services and re-use

those templates and logic in other virtual services, your service

virtualization solution should have the ability to re-leverage

any virtual service logic you have previously created. This will

help the team collaborate because you will be able to come to

consensus on what certain key service behaviors should be.

Mock that up once, and then use it multiple times.

✓ A CUSTOM EXTENSIBILITY FRAMEWORK

Should you need to write code to accomplish tasks such as

generating a proprietary token or unique identifier, your service

virtualization solution should have the ability to use scripts

but not be limited to a single language. Different testers and

developers use different scripting languages depending on the

level of expertise or preference. At a minimum, your service

virtualization solution should support Java, Jython/Python,

JavaScript, and Groovy.

Since new message formats and protocols show up all the time,

your service virtualization should also include a framework that

allows you to extend the tool’s capability. This will enable you to

support any transport or protocol that your organization is using,

whether it’s an industry standard or custom implementation.

✓ SUPPORT FOR AUTHENTICATION & SECURITY

Virtual services need to behave just like the real services, so

that will include things like authentication and security. Your

virtualization solution should give you the ability to validate

incoming transport layer security such as SSL certificates, as

well as interact with the live services during recording, which

could be governed with authentication mechanisms such as

oAuth, Basic Auth, Digest, Kerberos, NTLM, and so on.

Additionally, your service virtualization solution needs to be

able to negotiate and emulate message layer security. Examples

of this would be payload encryption, SAML, signatures, etc. By

being able to emulate the security mechanism, you can create

the most realistic virtual services possible and ensure that any

defects related to authentication or security are identified.

© 2019 Parasoft Corporation5

✓ CONFIGURABLE PERFORMANCE
ENVIRONMENTS

One of the most powerful applications of service virtualization

is enabling performance testing. You can laser-focus on

specific component SLAs by using virtual services to emulate

out of scope dependencies. You can create performance

environments by surrounding your application with virtual

services. This allows you to do earlier stage performance

testing and reduces your exclusive reliance on full performance

environments.

In order to do this, your service virtualization solution must

be able to adjust performance delays. You should be able

to configure baseline performance delay times based on

static values as well as be able to adjust performance

delays dynamically as the virtual service is used (more hits =

increasingly slower performance).

Additionally, it is valuable to be able to leverage your existing

application monitoring profiles for your virtual services, so it’s

important for your virtualization solution to understand and

import performance delays from solutions like App Dynamics

or Dynatrace.

✓ SUPPORT FOR CLUSTERING AND SCALING

As your service virtualization solution becomes adopted by the

performance team, or general usage increases, you will need

your solution to enable scaling. Scaling can manifest in two

forms: high throughput and fault tolerance.

To support scaling, you will want your service virtualization

solution to be easily clustered behind a load balancer so that you

can distribute the load given to your virtualization infrastructure

appropriately, and your service virtualization solution should

be able to maintain asset parity as you adjust different virtual

services on individual nodes. This can be accomplished by

coordinating your virtual services through a source control

system or by having a centralized asset authority that deploys

the appropriate virtual services in the right configuration to

each node in the cluster.

© 2019 Parasoft Corporation6

Optimized Workflows

✓ RECORD AND PLAYBACK

Creating virtual services from actual transactions in your

environment is the best way to build virtual services that

emulate the real behavior of your live services. To do so, your

service virtualization solution should be able to capture traffic

from your environment, either natively or through integrations

with solutions like Wireshark or Fiddler, enabling non-technical

users to capture their specific use cases into virtual services

without intimate knowledge of the real back-end services.

Look for a service virtualization solution that gives you the

ability to not only process the traffic, but capture that traffic into

a service template, so that any decisions that you make during

the traffic processing workflow can be captured into a reusable

model.

✓ AI-POWERED ASSET CREATION

If your service virtualization solution has intelligence built into

the asset creation process, it will be able to make decisions

about things you commonly do when creating your virtual

services. An example of this is in automatically determining the

appropriate transport, message, and data source correlation

to apply when processing traffic. Artificial intelligence allows

solutions to analyze all of the available requests, looking for

patterns and relationships, and then determining the best way

to group that information while at the same time identifying and

automatically generating a data source for the parameterizable

values. With AI-powered asset creation, your solution will do

the majority of the decision-making automatically, enabling

non-technical users to create virtual services right away.

✓ TEST DATA MANAGEMENT / GENERATION

Often the services that are identified as candidates for service

virtualization are actually suffering from data challenges, so test

data management and service virtualization go hand-in-hand.

In addition to creating virtual services, your service virtualization

solution can generate the test data you need, tightly coupled

with your test data management/generation solution so that

you can capture data from your environments, mask that data

for privacy reasons, abstract transactions into a data model,

and then generate and subset data in those models.

Having a test data management solution that is deeply

integrated with your service virtualization solution will allow you

to tackle any virtualization opportunity with greater flexibility.

For example, to create an early stage virtual service without the

required data on hand, you can use your virtualization solution

to create the virtual service from the service definition and then

abstract that into a data model. You can then apply business

rules into the data and generate the appropriate data to cover

all of the various behaviors you are looking for.

Test data management can be a key enabler of your service

virtualization solution, so having one that’s easy to understand

and adopt will ultimately help the entire virtualization initiative

gain traction and provide ROI as soon as possible.

✓ RECORD AND PLAYBACK

✓ AI-POWERED ASSET CREATION

✓ TEST DATA MANAGEMENT/GENERATION

✓ DATA RE-USE

✓ SERVICE TEMPLATES

✓ MESSAGE ROUTING

✓ FAIL-OVER TO LIVE SYSTEM

✓ STATEFUL BEHAVIOR EMULATION

© 2019 Parasoft Corporation7

✓ DATA RE-USE

In the early stages of asset creation you may only be able

to record a subset of the actual services behavior, so you

should be able to rely on your service virtualization solution

to incrementally add data to its data library. As you progress

through the development cycles, you may want to add

additional behavior and logic to your service without starting

over from scratch every time. To avoid this, you can choose a

service virtualization solution that allows you to re-record new

data and merge it into your existing data structures.

It is also worth investigating whether your service virtualization

solution can incrementally update its data library via automation.

Doing so will allow you to create a process where you capture

additional data and merge it into your virtual services data

library in an automated way.

✓ SERVICE TEMPLATES

Service templates are critical to any service virtualization

solution. Virtual services are like snowflakes — each one is

different, and it can be really complicated for a centralized team

to create virtual representations of an entire organizational

service library. A key to a truly scalable governance process for

service virtualization will be adopting workflows that allow you

to incrementally maintain virtual services.

A service template can be thought of as an abstraction of

a virtual service’s creation logic, containing things like its

deployment mechanism, data source connections, message

correlation logic, data source correlation logic, any associated

service definitions, data reuse strategy, target deployment

server location, and so on.

By templatizing these configuration details into a reusable

artifact, iteratively developing new behavior on top of existing

virtual services becomes more manageable. Depending on the

service virtualization solution you choose, service templates

may manifest as different offerings, but ultimately you should

look for a mechanism that allows you to abstract asset

information into a reusable area that can be shared across the

organization and updated.

✓ MESSAGE ROUTING

Because virtual services are designed to process incoming

messages and determine how to respond to them, that

interrogation/determination process can be repurposed as a

message router. There may be situations where you want to

route certain messages to the live system, either because you

want to capture some real behavior under certain conditions

or you’ve decided not to virtualize pieces of your application.

You can also provide different virtual responses for different

users by analyzing the incoming request and routing those

messages to different virtual services. To enable this, your

service virtualization solution should be able to repurpose any

virtual service(s) into message routers, so you can appropriately

funnel messages through your environment without having to

reconnect applications all the time.

✓ FAIL-OVER TO LIVE SYSTEM

Service proxies that you create for recording traffic can

be repurposed as message routers as well. Your service

virtualization solution can fail over to the live system if your

virtual service does not have the appropriate data. This will

allow you to incrementally build your virtual service to cover

common use cases at first, while still having all of the responses

available even if you haven’t captured them.

This technology can be used in the opposite direction as

well, so you can create a “failover to virtual” scenario where

the majority of your traffic goes to the live service unless that

service goes down. At that point, the failover mechanism will

allow you to funnel information to your virtual service so that

when your environment is intermittently unstable, you will still

be backed by virtual services.

✓ STATEFUL BEHAVIOR EMULATION

Stateful virtualization allows you to create virtual services that

behave just like the real services, and update themselves

based on usage. Your solution can make state-based modeling

easy to pick up by novice users, using simple interfaces to

add the necessary logic to Create, Read, Update, and Delete

data while using your virtual services. You’ll be able to create

more flexible virtual services and reduce the overhead of

data management without all of that tedious mucking about in

databases. This is extremely valuable when you want to build a

process transaction flow like the ones often used in shopping

cart applications and Open Banking API sandboxes.

© 2019 Parasoft Corporation8

Supported Technologies

✓ REST API VIRTUALIZATION

Your service virtualization solution should be able to emulate

APIs using Representational State Transfer (REST). This

includes support for service definition such as Open API (OAS

3), Swagger, or RAML. Your tool should be able to simulate URL,

method, path, parameter, query, and JSON payload information

as well as emulating headers, mime-types, attachments, and so

on. Additionally, it needs to be able to consume and process

restful requests, so the correlation can be applied on all of the

message options listed above.

It is also important to be able to validate incoming RESTful

requests, so you can accept or reject messages that do not

conform to the appropriate schema. This is an example of using

service virtualization as a powerful validation mechanism.

✓ SOAP API VIRTUALIZATION

Simple Object Access Protocol (SOAP) is an interface that

is still widely used in applications and is a good target for

virtualization. Your service virtualization solution must be able

to interface with SOAP APIs, including support for service

definition such as WSDL and schema/.XSD. It must be able to

respond to SOAP compliant messages including SOAP action,

attachments, WS policy, and relevant SOAP headers.

✓ ASYNCHRONOUS API MESSAGING

Especially for reactive microservice environments, your service

virtualization solution should be able to act asynchronously

(send requests and responses without waiting for a

corresponding reaction. An example of this would be creating

a virtual service that upon invocation sends an asynchronous

message somewhere else in your environment.

✓ MQ/JMS VIRTUALIZATION

Middleware systems often cause a lot of trouble for our test

environment and are therefore good candidates for service

virtualization. To reap the benefits, your service virtualization

solution must be able to simulate various queue/topic patterns,

including point-to-point and publish/subscribe, to allow you to

validate complete end-to-end scenarios and simulate systems

that leverage these technologies.

✓ IOT AND MICROSERVICE VIRTUALIZATION

IoT and microservices are bringing a host of new testing

challenges, including new complexities in our test environments,

especially the ability to isolate individual microservices for

testing. Service virtualization allows you to create the isolation

you need for testing, so if you are using these technologies

or may in the future, your service virtualization solution needs

to be able to communicate over the interfaces specific to IoT

and microservices (i.e. Websockets, MQTT, AMQP/Rabbit MQ,

Kafka, and Protocol Buffers).

✓ REST API VIRTUALIZATION

✓ SOAP API VIRTUALIZATION

✓ ASYNCHRONOUS API MESSAGING

✓ MQ/JMS VIRTUALIZATION

✓ IOT & MICROSERVICE VIRTUALIZATION

✓ DATABASE VIRTUALIZATION

✓ WEBPAGE VIRTUALIZATION

✓ FILE TRANSFER VIRTUALIZATION

✓ MAINFRAME AND FIXED LENGTH

✓ EDI VIRTUALIZATION

✓ FIX, SWIFT, ETC.

© 2019 Parasoft Corporation9

✓ DATABASE VIRTUALIZATION

Database virtualization is arguably one of the quickest ways to

get massive ROI from your service virtualization deployment.

Databases are often bottlenecks in testing environments

because multiple testers are interacting with them and

potentially polluting our data sources. Additionally, many

databases may not contain the proper data or behavior that we

are looking for given the different types of testing activities.

Simulating databases is a fast way to unblock an individual and

give them total control of the test environment. To do so, your

service virtualization solution needs to be able to intercept

calls that are going to your databases, in order to record and

create virtual services for them. Your service virtualization

tool can also give you the ability to switch between live and

virtual databases on demand. Coupling this with test data

management is one of the most powerful ways to take control

of your test environments and get maximum ROI from service

virtualization.

✓ WEBPAGE VIRTUALIZATION

An increasingly popular activity, webpage virtualization is

a powerful way to provide training or demo environments to

your organization and stakeholders. By backing a webpage

with a virtual service, you can provide an experience through

the web application that is customized to an individual user,

specific demo flow, or to highlight new capability. Through

virtualization you can simulate this without having to build all

of the infrastructure in the backend. Your service virtualization

solution can serve up HTML pages as well as be able to

correlate RESTful information provided from interacting with

the page, so that different pages can be served up through the

users’ journey.

✓ FILE TRANSFER VIRTUALIZATION

Many legacy systems communicate by exchanging files, and

they can serve as a bottleneck in your testing environments.

As organizations move through the different maturity stages of

service virtualization they often find that the legacy systems,

which can be the most complicated, tend to provide the biggest

ROI for service virtualization.

File transfers are an example of a communication mechanism

that is difficult to emulate, so your service virtualization solution

needs to be able to scan folders looking for files, pick up those

files, process them, and then provide the appropriate response.

This can either be a new file showing up in a different folder or

potentially an asynchronous or JDBC call. This kind of process

emulation is very valuable when you have a third-party system

that you connect with, that communicates via file transfers.

✓ MAINFRAME AND FIXED LENGTH
VIRTUALIZATION

For some industries in particular, mainframe virtualization can

serve as a very powerful virtualization project. Mainframes

are often out of the control of open systems developers, but

hold a lot of the critical data needed to make these systems

work. Communication to mainframes is often done through

interfaces like REST, MQ, or TCP, and communication from

mainframes to databases is often JDBC or DB2. For mainframe

virtualization, your service virtualization solution needs to be

able to communicate over these mechanisms as well as be

able to communicate using the COBOL copybook message

format. This will allow you to approach mainframe virtualization

initiatives and free up open systems development by decoupling

mainframe dependencies.

✓ EDI VIRTUALIZATION

EDI is a message format standard used to communicate business

information between business entities. Businesses used to use

paper for these transactions (i.e. purchase orders, invoices, or

in the healthcare industry, for instance, enrollment forms), which

was extremely complicated and prone to error. To improve on

the process, EDI was designed to standardize communications

and make a “paperless exchange.” Systems that communicate

over EDI are great candidates for virtualization, so if you make

use of EDI, your service virtualization solution needs to be able

to provide a mechanism for sending messages in the correct

dialect, version, and standard. Additionally, by combining EDI

virtualization with file transfer virtualization, you’ll be able to

emulate legacy systems often found in insurance, finance, and

medical industries.

✓ FIX, SWIFT, ETC.

There are hundreds of additional message formats and

protocols to consider out there. This can be one of the hardest

areas to clearly identify when choosing a service virtualization

solution, but in order to fully cover all of the dependencies your

organization may have in the future, it makes sense to take

an inventory ahead of time so that you can understand the

message formats and protocols that you will require.

To ensure you have the support that you need, make sure that

your service virtualization solution has a custom extensibility

framework, so that any unknown future or proprietary interfaces

can be covered by creating a custom implementation.

© 2019 Parasoft Corporation10

Automation

✓ CI INTEGRATION

To dynamically deploy virtual services as a function of code

check-in, your service virtualization solution should be able

to integrate into your existing CI process. This will allow you

to surround your application with virtual environments and

execute your integrated test scenarios as early as possible,

defining virtual service behavior such as specific data sources

and performance profiles as a part of your CI configuration. This

will allow you to deploy the right virtual services, the right way,

automatically, and will greatly stabilize your CI pipeline.

✓ BUILD SYSTEM PLUGINS

Many CI pipelines take advantage of build systems such as

Jenkins, Microsoft’s Azure DevOps, Atlassian’s Bamboo, Jet

Brain’s Team City, and many more. To optimize workflows,

your service virtualization solution should have native plug-

ins into these build systems so that you can accomplish your

automation tasks that involve virtualization as a build step in

your pipeline. This will not only make environment management

a much easier task but will help build virtualization in as a part

of your DevOps process.

✓ COMMAND-LINE EXECUTION

If your service virtualization solution can execute via command-

line invocation, you will be able to dynamically start and stop

your virtual servers as needed when running your test cases.

Your command-line interface should be dynamic as well, so you

can swap configuration details on the fly.

✓ OPEN APIS FOR DEVOPS INTEGRATION

Open APIs, that enable you to programmatically generate,

configure, and deploy virtual services, will allow you to set

up a client/server configuration for your DevOps pipeline and

your service virtualization platform. A series of open APIs will

provide you with the ability to set up a scalable infrastructure

and reduce overall licensing costs by programmatically making

calls to the virtualization server from multiple areas of your

organization as needed to configure the right virtual services

on demand.

✓ CLOUD SUPPORT (EC2, AZURE)

If your service virtualization solution can be deployed either on

premise or into a cloud environment such as Amazon EC2 or

Microsoft Azure, you will be able to swap out the underlying

hardware with ease. Containerization is a big component of

reference architectures as well, so look for service virtualization

that gives you the ability to deploy the technology via Docker.

✓ CI INTEGRATION

✓ BUILD SYSTEM PLUGINS

✓ COMMAND-LINE EXECUTION

✓ OPEN APIS FOR DEVOPS INTEGRATION

✓ CLOUD SUPPORT (EC2, AZURE)

© 2019 Parasoft Corporation11

Management and Maintenance

✓ GOVERNANCE

As your service virtualization initiative scales, it will be important

to set up a governance process around its usage, defining

roles, responsibilities, access levels, policies, procedures,

SLA’s, naming standards, and more, so you can build a center

of excellence that can handle a large volume of incoming

virtualization requests without becoming a bottleneck. To

enable this, your service virtualization solution should have

mechanisms for defining best practices as well as utilization

review, so you can identify who’s using service virtualization

and how, and audit the usage. A side effect of this is the ability

to quantify your ROI through asset utilization, understanding the

value that teams are getting from virtualization (and identifying

the teams that have stopped using it).

✓ ENVIRONMENT MANAGEMENT

Once you’ve built a large inventory of virtual services, your

service virtualization solution should help you manage virtual

test environments with a self-service interface, so users

can define what virtual services are connected to particular

workflows, as well as what configuration is required to enable

test automation of that flow. Instead of having to wait on a

centralized team to deploy the proper virtual services, individual

users will be able to select the appropriate virtual environments

for their use cases, deploy them (on premise or into the cloud),

and test away.

✓ MONITORING

Successful service virtualization is based on users trusting that

their virtual services are behaving the way that they expect, so

monitoring is essential. DevOps engineers must trust that the

proper virtual service has been deployed, and testers must trust

that issues stemming from environments with virtual services

are not causing false positives in their defect detection. Your

service virtualization solution should enable you to monitor

requests and responses that flow through your virtualization

infrastructure, so you can identify errors out of the abundance

of transactions that take place, and proactively identify and

trace issues in your environments.

✓ A PROCESS FOR MANAGING CHANGE

Many virtualization initiatives fall apart when it comes to API

change. Users have spent a lot of time creating the necessary

virtual services, and when the real services change things

become out of sync. To solve this, your service virtualization

solution can natively integrate with source control systems to

enable maintenance of several versions of your virtual services

for forwards and backwards compatibility.

Your service virtualization solution can also understand the API

change by automatically mapping different versions of services

to each other. Through this capability, users can create a change

template that can be applied to impacted virtual services and

automatically update them to the new version, maintaining

data and logic in the service while still rapidly adjusting to the

change. All in all, this will be one of the most critical capabilities

you must have for true ownership of a long-term, successful

service virtualization deployment.

✓ ON-PREMISE & BROWSER-BASED ACCESS

Your ad hoc users will want browser-based access so they don’t

have to install anything, and your center of excellence will want

powerful virtualization desktop clients that allow them to create

the best virtual services possible. In order to facilitate this, you

need to choose a service virtualization solution that allows

you to do both, along with a centralized coordination platform

that allows you to link these two types of users together into a

collaborative architecture to prevent redundant asset creation.

✓ GOVERNANCE

✓ ENVIRONMENT MANAGEMENT

✓ MONITORING

✓ A PROCESS FOR MANAGING CHANGE

✓ ON-PREMISE AND BROWSER-BASED
ACCESS

From development to QA, Parasoft’s technologies reduce the time, effort, and

cost of delivering secure, reliable, and compliant software, by integrating static

and runtime analysis; unit, functional, and API testing; and service virtualization.

Powerful reporting and analytics help users quickly pinpoint areas of risky code and

understand how new code changes affect their software quality, and groundbreaking

technologies that add artificial intelligence and machine learning to software testing

make it easier for organizations to adopt and scale an efficient software testing

practice across development and testing teams.

ABOUT PARASOFT

Copyright 2019. All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or reg-
istered trademarks of Parasoft Corporation. All other products, services, and companies are trademarks, registered
trademarks, or servicemarks of their respective holders in the US and/or other countries.

www.parasoft.com

Parasoft Headquarters:
+1-626-256-3680

Parasoft EMEA:
+31-70-3922000

Parasoft APAC:
+65-6338-3628

Looking for a tool that
checks all of these boxes?

Choosing the right service virtualization solution for your organization can be a huge undertaking. Moving away

from industry buzz and focusing on critical features and capabilities that your organization will need is the best way

to identify the right solution. To get a solution that has all these capabilities and more you can check out Parasoft

Virtualize. Learn more and get a free copy of the most powerful service virtualization solution on the market at

https://software.parasoft.com/virtualize/community-edition/.

Parasoft Virtualize

When testing is at a standstill because because systems are still evolving, difficult to access,

difficult to scale, or difficult to configure, you can rapidly create virtual test environments

with Parasoft Virtualize. Use Virtualize to create, deploy, and manage simulated dev/test

environments, and minimize constraints that ordinarily arise from inadequate test data.

Unlike any other service virtualization solution, Virtualize can create realistic simulations by

monitoring existing behavior, enabling users with limited expertise to quickly create reliable

test environments.

Create, deploy, and manage virtual test environments – anytime, anywhere.

LEARN MORE

https://www.parasoft.com/products/virtualize
https://www.parasoft.com/products/virtualize
https://software.parasoft.com/virtualize/community-edition/
https://www.parasoft.com/products/soatest
https://www.parasoft.com/products/virtualize

