
C O P Y R I G H T 2 0 1 9

Testing in the
Age of Agile
and DevOps

SPECIAL REPORT

As agile and DevOps move further into the mainstream, testing
must evolve to keep pace. Agile’s frequent releases and DevOps’
continuous deployment leave little time for testers to ensure the
product they deliver is secure and error-free.

This special report addresses common challenges testers face in
this fast-paced environment and offers tips to kick start the test
automation and API testing initiatives you must implement to succeed
in today’s market.

How Do You Choose the Right API Testing Tool?
There’s no question that API testing is integral for identifying defects at multiple
layers of your application and ensuring a seamless customer experience. But there
are many different approaches and tools available on the market. How do you get
the ROI you’re looking for to achieve the automation necessary to deliver high qual-
ity software at the speed of agile and DevOps initiatives?

5 Key Factors to Achieve Agile Testing in DevOps
Part of the path to DevOps requires adoption of agile methodologies. What does it
mean for testing when you switch from the traditional waterfall model, with a few long
release cycles per year, to the agile model, with changes occurring every two weeks?
Here are five key factors to achieve the agile software testing necessary in DevOps.

Performance Testing for Our Modern, DevOps World
As DevOps-based methodologies are more broadly adopted, we’ll increasingly
move to a continuous testing model. Containerized environments and microser-
vices make it easier to optimize your application by validating changes to the envi-
ronment or system configuration, allowing you to deliver better products faster.

The Shift-Left Approach to Software Testing
The earlier you find out about problems in your code, the less impact they have and
the less it costs to remediate them. Therefore, it’s helpful to move testing activities
earlier in the software development lifecycle—shifting it left in the process timeline.
This article explores the shift-left methodology and how you can approach shifting
left in your organization.

Getting Your New Web Test Automation Up and Running
So you have the responsibility of a new team and getting an entirely new web au-
tomation test infrastructure up and running. Here are the hurdles, pitfalls, and suc-
cesses one QA director encountered, along with the milestones the team defined to
measure success, how they migrated their existing manual tests, and the path they
took to establish the new web test automation initiative.

Insight from around the Industry

Additional Resources

In this API Testing Special Report

2

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

What Is API Testing?
API testing enables developers and testers to test the
series of components that make up their application.
Without API testing, they would be stuck manual test-
ing, just like a user, testing the application at the UI
level, waiting until the entire application stack is built
before being able to start testing.

You can instead perform automated API testing by
testing the application at the API level, designing test
cases that interact directly with the underlying APIs,
and gaining numerous advantages, including the abil-
ity to test the business logic at a layer that is easy to
automate in a stable manner. Unlike manual testing,
which is limited to validating a specific user experi-
ence, API testing gives you the power to bulletproof
your application against the unknown.

Testing earlier, at the API level, helps you “fail fast and
fail early,” catching defects early at their source, rath-
er than later in the software delivery process. API tests
include service tests, contract tests, component tests,

scenario tests, load/performance tests, security tests,
and omni-channel tests.

API tests can all be automated and run continuously, so
you can ensure that your application is aligned to busi-
ness expectations while also functionally precise. Since
API tests work at a much lower level than UI tests, you
know that you will have consistency and the tests that
you are building will last for a long time to come.

The API Testing Tool Landscape
There are two main types of API testing solutions, broad-
ly categorized into lightweight and enterprise tools.

Lightweight Tools
Free or open-source tools (i.e. Postman) are great
because they help you get going quickly, create very
simple smoke tests, apply basic validations, and we
often see them used by development teams to test
in an ad-hoc way. A lot of these tools are free in the
short term (although become more expensive when it
comes to vendor support and maintenance).

How Do You Choose the Right
API Testing Tool? Key Capabilities to make your Organization

Successful in Today’s Testing Environments

When it comes to API testing,
where do you start?
There’s no question that API testing is integral
for identifying defects at multiple layers of your
application and ensuring a seamless custom-
er experience. But there are many different
approaches and tools available on the market.
How do you get the ROI you’re looking for to
achieve the automation necessary to deliver
high quality software at the speed of Agile and
DevOps initiatives?

Use this guide to gain confidence choosing a tool
to help you address today’s key challenges, such
as omni-channel testing, test maintainability,
microservices, difficulties reproducing defects,
and the impact of rapidly changing APIs. It is more
important than ever to choose the solution that is
right for you and your organization.

3

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

Enterprise Tools
More powerful, vendor-supported tools enable daily
testing of APIs, supporting a broader range of tech-
nologies. These comprehensive tools support complex
DevOps workflows and easily scale across teams and
organizations to enable continuous testing.

So What Do You Need?
You want to be able to do everything required for
your API testing requirements, but still have a solution
that’s easy to use, adopt, and scale throughout the
organization. Continue reading this guide to under-
stand the key capabilities you need in your API testing
solution to get the best of both worlds.

3 VISUAL AND SCRIPT-LESS FUNCTIONALITY
Your API testing tool should not require you to have
any experience writing code. A visual testing tool with
an intuitive and scriptless user interface will empow-
er a large body of testers (at a variety of experience
levels) to use the tool productively. API testing can
be overlooked when developers push it to QA, and
QA focuses on manual testing. Having an API testing
tool that is visual and script-less will enable testers to
adopt this critical testing practice without having to
spend lots of time on training and enablement.

3 A CUSTOM EXTENSIBILITY FRAMEWORK
Should you need to write code to accomplish tasks
such as generating a proprietary token or a unique
identifier, your API testing tool should have the capa-
bility of using the scripts, but it should not be limited
to a single language. Different testers and developers
use different scripting languages depending upon the
level of expertise and preference, so at a minimum,
your API testing tool should support Java, Jython,
JavaScript, and groovy.

Your API testing tool should also include a framework
that allows you to extend the tool’s capabilities, built-
in transports, and protocols. This will enable you to
support any transport or protocol that your organi-
zation is using, whether it is an industry standard or
custom tailored to you. Examples of these might be
DDS, plain socket, TCP, file-based messaging, etc.

3 AUTOMATED ASSERTIONS AND
VALIDATIONS

It is important for your API testing tool to help you
define success criteria for response validation. This
process should enable the tests to run automatically
as a batch, validate messages, and eliminate the need
for you to manually inspect your traffic. Your tool
should be able to automatically compare responses to
those expected, in bulk, as well as enable you to surgi-
cally validate a single element. Additionally, your tool
should be able to validate the schema of a request or
response payload to ensure the service is complying
to it service definition.

3 DATA-DRIVEN TESTING
For maximum flexibility when working with your API
testing tool, it should be able to data-drive your test
cases. This means that your framework should enable
you to swap out static values in your API calls with
dynamic values derived from data sources. It should
support a wide range of data sources including CSV,
Excel, JSON, as well as simple in-project tables.

You should be able to leverage dynamic data sources
as well. An example of this would be connecting to a
live database and pulling dynamic data at runtime, as
well as a writable data source that can be updated on
the fly. Additionally, you should be able to aggregate
data sources together and have a mechanism for rap-
idly switching between them.

Ease-of-Use and Core Capabilities

3 VISUAL AND SCRIPT-LESS FUNCTIONALITY

3 A CUSTOM EXTENSIBILITY FRAMEWORK

3 AUTOMATED ASSERTIONS AND VALIDATIONS

3 DATA-DRIVEN TESTING

3 TEST RE-USABILITY

3 ABILITY TO RAPIDLY CREATE TESTS BEFORE A
SERVICE IS AVAILABLE

3 AUTHENTICATION

4

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

3 TEST RE-USABILITY
Your API testing solution should be able to re-lever-
age any API test you have previously created. This
gives you the ability to define scenarios such as web
UI logins, complex authentication, or a repeated set
of actions once and then bring them into subsequent
test cases as a reference. This will help you maintain
your library of test cases by providing a location where
you can update critical paths and have child test suites
inherit that information.

3 ABILITY TO RAPIDLY CREATE TESTS
BEFORE A SERVICE IS AVAILABLE

It’s important to ensure that your API testing solution
helps you rapidly create tests early in the software
development process. This is critical because in order
to adequately take advantage of the benefits of agile,
you will need to focus on new features and function-
ality introduced into each Sprint. Often this takes the
form of modifications to UIs and APIs. Being able
to rapidly test this functionality before it’s available
ensures that you will be able to maximize your test
coverage and ensure your critical use cases.

To do this your API testing solution must be able to
consume service definitions such as Open API/Swag-
ger, WSDL, RAML, as well as schema definitions.

3 AUTHENTICATION
Your API testing solution also needs to work with
authentication, encryption, and access control. A
large number of your services will be deployed via an
encrypted protocol such as SSL, as well as having a
security policy such as Oauth, Basic auth, Kerberos,
payload encryption, SAML, Signatures, etc.

It is important to be able to communicate using these
authentication mechanisms, so your API tool must
support all of the common standards. Additionally,
you will need to validate your security is working
properly, so your API testing tool should have a mech-
anism to ensure that the standards are implemented
properly and work flawlessly.

3 TEST FLOW LOGIC
Your API testing tool should have a mechanism for
controlling test flow based on conditions. Not all test
scenarios will execute in a linear fashion, so you may
need to make automatic decisions at runtime that
will affect how your test executes. An example of this
might be ensuring that a response contains a specific
element prior to moving to the next test step. Addi-
tionally, you may want to pause execution and poll a
web service for a while to ensure a process has taken
place, so your API testing solution must have the
ability to analyze responses for key criteria and then
use that information to control the rest of the test
execution.

3 AI-POWERED TEST CREATION
Your API testing solution must be able to work in an
agile context. A key capability for success here is intel-
ligent test creation, that brings significant efficiency
gains. Your API testing tool should help you build test
cases by understanding actions that you do repeated-
ly and learning how to do them for you. By leveraging
artificial intelligence, your API testing solution will be
able to monitor actions you’re already testing man-
ually with your applications, and automatically infer
the relevant API calls from these actions. By stream-
lining the activities you do often and learning how to
optimize the test creation process, you will be able to
achieve a more successful API testing rollout.

Optimized Workflows

3 TEST FLOW LOGIC

3 AI-POWERED TEST CREATION

3 TEST DATA MANAGEMENT / GENERATION

3 EVENT MONITORING

3 BDD SUPPORT (CUCUMBER)

5

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

3 TEST DATA MANAGEMENT /
GENERATION

Testers can spend a lot of time gathering adequate
test data. Your API testing tool should support you in
this activity by providing workflows for connecting to
various data sources as well as generating test data
itself. Your solution should have the ability to under-
stand the types of data you require for given scenarios,
and build on that test data with additional use cases so
that your test cases can be as flexible as possible.

3 EVENT MONITORING
To enable end-to-end testing, your API testing solution
must be able to monitor events as they flow through
your system, so you can validate inputs and expected
outputs, and understand how transactions transform
as they move through your application. With multi-
step validation by plugging into your application
internals via JMS messaging, database monitoring,
etc., your solution will be able to provide greater levels
of test coverage.

3 BDD SUPPORT (CUCUMBER)
To support BDD, your API testing solution should give
you the foundation for Cucumber step definitions that
your QA team needs to build the required test steps
for business analysts to leverage in their BDD. This
will broaden the usage of your solution across key
stakeholders and ensure that your testing is done at
the earliest stage possible.

3 REST API TESTING
Your testing tool must be able to interface with Repre-
sentational State Transfer protocol (REST) APIs. This
includes support for service definitions such as Open
API OAS3, Swagger, or RAML. Your tool must be able
to send URL, Method, Path, Parameter, Query, and
JSON payload information, as well as Headers, Mime
Types, Attachments, and so on. Additionally, it needs
to be able to consume and validate request and re-
sponse for simple regression or schema validation.

3 SOAP API TESTING
Simple Object Access Protocol (SOAP) is still extreme-
ly relevant in most applications, so your API testing
solution must be able to interface with SOAP APIs. This

includes support for service definitions such as WSDL
and schema XSD. It must be able to send SOAP-com-
pliant requests that include SOAP action, attachments,
WS policy, and relevant SOAP headers. Additionally, it
needs to be able to consume and validate SOAP XML
responses for simple regression or schema validation.

3 MQ / JMS TESTING
Your API testing solution must support queuing
technology such as MQ and JMS, so you can simulate
various patterns including point-to-point and publish/
subscribe. This will allow you to do complete end-
to-end testing, and validate message systems that
leverage these technologies.

3 IOT AND MICROSERVICES TESTING
IoT and microservices are bringing a host of new test-
ing challenges. While still largely REST/JSON based,
the future of IoT and Microservices will have interfaces
deployed on nonstandard protocol (i.e. Websockets,
MQTT, AMQP/Rabbit MQ, Kafka, and Protocol Buffers).
Your API testing tool must be future-proof and have
the ability to communicate via these new protocols, so
that as they begin to be implemented at your organi-
zation, you are ready to test them.

A second testing need is the ability to isolate individual
Microservices that are deployed via an asynchronous
protocol. Your API testing tool must be able to emu-
late not only a provider to the queue or topic but also

Supported Technologies

3 REST API TESTING

3 SOAP API TESTING

3 MQ / JMS TESTING

3 IOT AND MICROSERVICE TESTING

3 DATABASE TESTING

3 WEB-BASED TESTING

3 PERFORMANCE TESTING

3 TESTING NON-STANDARD MESSAGE FORMATS

6

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

have the capability of consuming messages off of the
topics, so you can isolate and test individual services.

3 DATABASE TESTING
Your API testing tool must have the ability to commu-
nicate with databases. This will give you the ability to
validate the contents of the database as you are inter-
acting with your system via the APIs. This will enable
end-to-end testing and ensure that your messages
traverse through your system properly. Additionally,
by being able to connect with your databases you will
be able to pull data out of the database prior to API
test execution. This will make your API test scenarios
more dynamic by being able to use the most relevant
and up-to-date data.

3 WEB-BASED TESTING
Your API testing tool must have an integrated capabil-
ity for testing your web UIs. This does not need to be
your only web UI testing solution (i.e. Selenium), but
should complement your API testing so that you can
test across multiple interfaces exactly the same way
your customers will interface across your business. An
example of this would be using your web UI capability
to log into an application and begin a transaction. You
could then leverage your APIs to hit individual compo-
nents to validate the transaction has seated into your
application properly, and then finally you would be
able to pull from the database to ensure the relevant
information was stored appropriately.

3 PERFORMANCE TESTING
Your API testing solution should allow you to shift left
performance testing by leveraging the API tests you
have been creating for individual component, smoke,
and regression tests as a part of your nonfunctional
load and performance testing strategy.

Your API testing solution should allow you to gener-
ate load via a built-in mechanism for controlling the
number of transactions or number of virtual users. By
having this performance testing capability integrated
into your API testing solution, you will be able to con-
duct more performance tests earlier in the software
delivery lifecycle.

3 SUPPORT FOR NON-STANDARD
MESSAGE FORMATS

Your API testing solution must be able to communi-
cate over non-standard message formats and pro-
tocols, such as mainframe (copybook), fixed length
messaging, or Electronic Data Interchange (EDI,
which is often found in the exchange of computer to
computer business documents), as well as industry
standard message formats and protocols such as FIX
and SWIFT. It is also important for your API testing
solution to be extensible, to include additional pro-
prietary message formats and protocols that your
business demands. The extension of these protocols
should be scriptless and modular.

3 CI INTEGRATION
Your API testing tool should have the capability to
integrate into your existing CI process, so you can
execute test cases via a command line interface or a
series of open REST APIs, and select which type of test
cases you want to execute with a specific configura-
tion. Additionally, you should be able to retrieve the
results and process them back into your CI pipeline
to make an automated go or no-go decision in your
deployment activities.

3 BUILD SYSTEM PLUGINS
Your API testing solution should have built-in plugins
for common CI systems such as Jenkins, Microsoft VSTS,
Atlassian bamboo, and Jet Brains Team City. There are
other build systems available, so your API testing solu-
tion should have an extensibility platform to allow you
to build connectors for all future CI systems.

Automation

3 CI INTEGRATION

3 BUILD SYSTEM PLUGINS

3 COMMAND-LINE EXECUTION

3 OPEN APIS FOR DEVOPS INTEGRATION

7

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

3 COMMAND-LINE EXECUTION
Your API testing solution should have the ability to
execute your API tests in batch via a command line in-
terface. The command line interface should be easy to
use so that you can set up a variety of batch execution
scenarios across multiple interfaces without having a
heavy reliance on scripting.

Your command line interface should be dynamic so
that you can swap out variables, data sources, and
test environments by simply modifying flags. This will
ensure the command line interface is readily used by
your organization.

3 OPEN APIS FOR DEVOPS INTEGRATION
Your API testing solution should have open APIs that
allow you to programmatically generate, configure,
and execute test cases. This will allow you to set up a
client/server configuration for your DevOps platform
and your API testing platform. A series of open APIs
will allow you to set up a scalable infrastructure and
reduce overall licensing costs by programmatically
making calls to the API testing server from multiple
parts of your organization as needed to execute the
proper test cases.

3 INTEGRATION WITH REQUIREMENTS
MANAGEMENT SYSTEMS

Your API testing solution should integrate with
requirements management systems such as ALM,
Bugzilla, and Jira. You should be able to identify to
which requirements specific API tests are associated,
and have a mechanism to understand how the results
of that API test affect the individual requirements.

3 BASIC AND ADVANCED REPORTING
Your API testing solution should have a rich reporting
framework that allows you to understand individual
API test results, as well as the entire project health.
Your reporting framework should allow you to gener-
ate shareable documents that can be customized to
individual stakeholders needs, and be machine-read-

able so they can be processed by your build systems
and provide a simplified integration into your CI
pipeline.

3 TEST ORCHESTRATION
Your API testing solution should provide the ability to
bundle together API testing scenarios for execution in
multiple environments. This will enable you to create
a test run that is customized to an application in an
environment. Overall this will make your test cases
easier to manage by allowing you to provide dynamic
information into the scenarios such as data sources,
environment endpoints, user access control, etc. while
reusing the same test cases.

3 A PROCESS FOR MANAGING CHANGE
One of the most critical capabilities of your API testing
solution is a change-management process.

First and foremost, your API testing solution must na-
tively integrate with your source control system. This
will allow you to maintain several versions of your API
tests, for forwards and backwards compatibility.

Additionally, your API testing solution must be able
to understand the various versions of your APIs via
service definitions, or schemas, and should your API
service definitions change, your library of test cases
should have an automated re-factoring process. This

Management and Maintenance

3 INTEGRATION WITH REQUIREMENTS MAN-
AGEMENT SYSTEMS

3BASIC AND ADVANCED REPORTING

3TEST ORCHESTRATION

3A PROCESS FOR MANAGING CHANGE

3ON-PREMISE AND BROWSER-BASED ACCESS

8

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

should be automatic in the case of small changes, or
have an easy-to-understand process when dealing
with larger changes.

3 ON-PREMISE & BROWSER-BASED ACCESS
Your API testing solution must be broadly available.
This means that you should be able to access your
solution either on Prem or through a cloud provider,
and your API testing solution must have a desktop
application as well as a browser-based application.
This flexible deployment will help broaden access and
adoption of the solution, as well as help teams collab-
orate and reuse artifacts. As a part of enabling brows-
er-based access, your API testing solution should have
the proper user access controls in place so that your
company’s information is secure.

About Parasoft
From development to QA, Parasoft’s technologies reduce the time, effort, and cost
of delivering secure, reliable, and compliant software, by integrating static and
runtime analysis; unit, functional, and API testing; and service virtualization.

Powerful reporting and analytics help users quickly pinpoint areas of risky code and
understand how new code changes affect their software quality, and groundbreak-
ing technologies that add artificial intelligence and machine learning to software
testing make it easier for organizations to adopt and scale an efficient software
testing practice across development and testing teams.

www.parasoft.com

Looking for a tool that checks all of these boxes?
Choosing the right API testing solution for your organization can be a daunting challenge when
you take into account all of the features and capabilities to consider. To get a solution that has all of
these capabilities and more, you can check out Parasoft SOAtest. Learn more and get a free trial of
the comprehensive functional test automation solution at https://software.parasoft.com/soatest.

API, mobile, web UI, and database testing that’s easy to use, even for beginners.

Parasoft SOAtest brings artificial intelligence and machine learning to automated functional testing,
to help users test applications with multiple interfaces (i.e. mobile, web, API, and database). Its au-
tomated API testing mitigates the cost of re-work by enabling you to proactively adjust your library
of tests as services change.

Parasoft SOAtest efficiently transforms test artifacts into security and performance tests, to in-
crease re-usability and save time, all while building a foundation of automated tests that can be
executed as part of Continuous Integration and DevOps pipelines.

LEARN MORE

9

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

https://software.parasoft.com/soatest
https://software.parasoft.com/soatest

In recent years, many organizations have been im-
pacted by DevOps.

Some have implemented DevOps end to end by
changing people’s mindsets, automating deployment
and build processes by implementing appropriate
tools and processes, increasing test automation,
breaking up silos between development and oper-
ations, and automating monitoring and reporting.
Most organizations, though, have just started on their
DevOps journey or are somewhere in the middle of
the transformation process.

Part of the path to DevOps requires adoption of agile
methodologies. What does it mean for testing when
you switch from the traditional waterfall model, with
a few long release cycles per year, to the agile model,
with changes occurring every two weeks, or possibly
even more quickly?

In most organizations, the world of legacy systems col-
lides with the world of modern applications. However,
the two need to coexist. In the past, we were execut-
ing regression tests for legacy systems over several
weeks—manually as well as automated—but we don’t

have the same amount of time for testing anymore.

Switching from a traditional waterfall model to an
agile one requires new testing approaches.

Optimizing test automation is an excellent way to
bridge this gap. With automated tests in place, it
is possible to allocate scarce testing resources to
high-value activities, reduce time spent on test exe-
cution, and increase the number of test cycles possi-
ble in a shorter amount of time. The impact of these
changes can be realized immediately with reduced
efforts, cost savings, and dramatically improved time-
to-market readiness.

My organization has implemented a lot of automation
in the last few years—and made many mistakes in the
process! But we also learned a lot and are now able to
adapt better to a world that’s becoming more and more
agile. Automation only works if you have robust tests
that can run unattended from the beginning to end.

Here are five key factors to achieve agile software
testing in DevOps.

1. Test Data Management
Having the right test data is the first important step
in automation. If your test data is not stable, you will
never succeed. According to software industry statis-
tics, nearly 30 percent of test execution failures are
due to improper test data.

For each of your test cases, define what data is need-
ed in order to execute it. Keep it flexible, describing
the attributes your test data needs to fulfill rather
than the test data itself. For example, “John Doe from
UK” is the test data itself, and the correct definition
would be “Male natural person with nationality UK.”

5 Key Factors to Achieve Agile Testing in DevOps
By Denise Rigoni

10

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

https://www.ibmbigdatahub.com/sites/default/files/whitepapers_reports_file/IBM_Test_Data_Management_V0.4.pdf

Once you have defined the required attributes, where
is the best place to find test data? To be completely
flexible, and with the new GDPR legislation especially,
it makes sense to build up required test data syntheti-
cally. This is a good option if you don’t need historical
data (even though that is also possible to build) and if
your data setup is not too complicated or distributed
across too many different systems.

If you require more complex data, you might use
existing customer data that has been anonymized. In
this case, queries are needed to find data in the data-
bases matching the exact combinations of attributes.

Usually, a combination of both approaches works
best. Creating synthetic test data and running queries
on a database to attain highly suitable test data can
and should be automated.

Proper test data management is not only a must for
automation; it’s required for manual testing as well.
According to some surveys and statistics, manual tes-
ters spend 50 percent to 75 percent of their effort on
finding and preparing appropriate test data. Test data

must be independent from people maintaining it for
you to get a return on investment.

2. Flexible Steering
When you design your test cases, use steering param-
eters instead of copying the same test case several
times to fulfill certain criteria.

Let’s assume you need to run your test case first in a
development environment and later on in a produc-
tion-like environment. You would need to log in with
role X and role Y. It’s inefficient to copy the test case
four times for each combination of environment and
role when you can enter these parameters only once
in the test case as a steering element. This reduces the
overall maintenance of this test case by 75 percent.

Whenever possible, it’s advisable to work with reus-
able test step blocks. Frequently and repetitively used
test steps can be defined once and reused in different
test cases. For example, with a login for an application
or generation of a new client, which are used over and
over again for subsequent test cases, there will no lon-
ger be the need for repetition, which saves valuable
time and effort.

A failing test case often results in an end to the auto-
mated execution; therefore, the next test case cannot
run, because the application was left in an “unde-

fined” state. Imagine starting the automated execu-
tion in the evening to run the test cases overnight. The
next morning you would find your test cases were not
executed because the first test case that had failed
and prevented all the others from running.

This can be avoided by defining recovery scenarios for
each test case or making them completely indepen-
dent of each other. Instruct the test case what to do in
case of failure.

3. Test Environment and Service
Virtualization
Next to missing test data, unstable, unavailable, or
incomplete test environments are one of the biggest
time-consumers in testing.

Consider this scenario: Your tests are planned, tes-
ters organized and blocked their time on a certain
day, and, finally, when you want to start testing the
application, it is not available. Or the application itself
is available, but another dependent application or de-
pendent service delivering the data you needed is not.

The more people and applications involved, the more
complex the test environment becomes, and the risk
of unavailability increases.

However, in our modern agile world, the days of

Next to missing test data, unstable,
unavailable, or incomplete test
environments are one of the biggest
time-consumers in testing.

11

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

waiting to test everything until all components are
developed and all systems and services are completed
are gone. Instead, you need to simulate those compo-
nents or systems that are not yet connected or devel-
oped, so testing can be started earlier. This is possible
with service virtualization. You need to know the
parameters a service expects and the data it returns.

A good service virtualization testing tool can react to
changing circumstances and switch from virtualized
services to the real service if it becomes available, then
back to virtualized services if the service is not avail-
able for whatever reason.

Bear in mind you can’t do all your testing based on
virtualized services; at a certain point, you’ll have to
start real, end-to-end testing. But many critical defects
will be found before your end-to-end tests if you start
testing much earlier. This saves a significant amount
of rework and debugging costs later.

Additionally, a well-managed test environment
helps to improve stability. This can be achieved with
organizational measures (e.g., a centralized test
environment management team that coordinates
and controls the test environments) or defined test
environment management processes.

Many organizations do not want too many processes

put in place because they believe agile development
doesn’t need processes. However, certain process-
es—or, rather, rules of engagement—are necessary to
improve test environment stability.

These processes don’t need to be very time-consum-
ing, at least for more advanced test stages, such as
end-to-end tests or business verifications:

• If several applications and services from different
teams are involved, define time slots when deploy-
ments should happen—testers will then know when
everyone is done and they can start testing

• Actions like restarts of applications and services,
database refreshes, or other outages should be
planned during time slots where no testers will test

• If testers communicate when they plan to test—ei-
ther manual or automated test cases—such as by
calendar, a test environment management team
can better coordinate and communicate

• The more detailed new changes are communicated to
the testers, the better they can adapt their test cases

If scripted properly, DevOps automation can also help
manage environments.

4. Test Users
When automating test cases, it’s best to never include
your personal credentials in the automation. If you’re

out sick, your colleague won’t be able to execute
the test cases you’ve designed. Also, using another
person’s personal user account is typically a security
breach in most companies.

The correct approach is to set up special test users
that cover the different roles you require for testing
your applications. Test users will persist if someone
leaves the company or changes their role. Just make
sure you take into account roadblocks like single sign-
on, remote desktop connections, firewalls, cross-bor-
der access, or other barriers.

5. Continuous Testing and Continuous
Integration
Integrate your automated test cases into the continu-
ous software development cycle. If the test cases are
stable, why not run them every night or after every
build to quickly get results about the status of the
software? Ensure long-running tests are only integrat-
ed in test automation that runs during night builds,
when enough time is available to finish execution
before the next build starts.

Some automation tools integrate with standard de-
velopment tools that provide continuous integration
capabilities. Use distributed execution to run automat-
ed test cases on several machines in parallel to reduce
testing time and get the results as early as possible.

12

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

Performance testing used to be an optional aspect for
most applications—something you did at the end, if
you had time and you really cared. Now, it’s a must.

User expectations today are much more sophisticated
(you compete not only within your industry; your app
is compared with everything else users experience
online), and software is becoming more complex, with
many third-party components deployed over cloud
infrastructure.

And this is not limited to the performance of your
app. Your development process needs to be fast and
agile to guarantee a faster time to market and rapid
response to customers’ needs.

Enter DevOps, a new approach to the whole develop-
ment lifecycle, made possible by the introduction of
modern approaches such as continuous integration
and continuous deployment. The need for automation
is critical to DevOps, not only for development and de-
ployment, but also for testing. You don’t want testing
to become the bottleneck in your development process.

Continuous testing is possible thanks to new solutions
that allow for quick test creation and automation. Test-
ing that used to take weeks to cycle through QA can

now be accomplished within hours—no bottleneck.

Consequently, testing now can and must be an inte-
gral part of the application lifecycle. In the early stages
of development, you can use new techniques based
on test-driven development. During integration, func-
tional testing solutions automate most if not all the
required tests. And in preproduction, acceptance and
performance tests complete the QA phase.

Performance testing is no longer an add-on. It is now
a required component to guarantee applications can
scale rapidly and reliably.

Performance testing solutions make it easier to quick-
ly identify problems before the customers see them.
The key is automation and iteration. It is important to
be able to test frequently, rapidly, and efficiently.

As the cloud enables distributed architectures, soft-
ware is also moving in that direction. There has been
an increase in adoption of third-party cloud services
and, more recently, containers and microservices.
These new technologies have helped conclude the era
of the monolithic application and made it possible to
create modular architectures, where logical entities
can be developed and tested separately.

The boundaries of each logical component are well
defined, so there is a built-in resilience against failures
from other components. The change process gets
simplified and pieces can be tested and deployed
separately. The identification of issues and problems
also becomes faster, as each component is first tested
separately.

Containers and microservices also have an impact
on performance. It makes it easier to test the perfor-
mance of individual components in isolation, espe-
cially when changes affect only some areas. Contain-
erized environments make it easier to optimize the
application by validating changes to the environment
or system configuration.

As DevOps-based methodologies are more broadly
adopted, the software testing process will increasingly
move to a continuous testing model. While this may
be a significant adjustment in the near term, the use
of modular software architectures and continuous
testing will have a positive impact on the overall ap-
plication performance, empowering DevOps teams to
deliver better products faster.

Performance Testing for Our Modern,
DevOps World By Paola Rossaro

13

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

The campaign for agile and DevOps teams to shift left
is about moving critical testing practices earlier in the
development lifecycle.

Many testing activities occur late in the cycle, where it
takes longer to figure out problems and costs more to
fix them. When you wait to perform testing practices
later in the development cycle, your nonfunctional
business requirements in particular, such as security
and performance testing, are so fundamentally in-
grained in your code that all you can really do is patch
them up rather than fix them properly.

Shifting left is about doing this identification and pre-
vention of defects sooner.

Detecting and Fixing Software Defects
The shift-left testing strategy is well illustrated in the
somewhat famous graph from Capers Jones, below,
which shows the increasing cost of bugs and defects
as they are introduced into the software at each phase
of software development.

The first part of the graph shows that the vast majority
of bugs come in during the coding phase, which is to
be expected.

Whether they make mistakes, misunderstand the
requirements, or don’t think through the ramifications
of a particular piece of code, developers introduce
defects as the code is produced. Defects are also
introduced into the application when it’s time to fit
the pieces together, especially if multiple teams are
involved (and as modern architectures like microser-
vices get more complex).

Now let’s overlay onto the same graph the line that
shows when defects are found. Notice that it is basical-
ly an inverse of the first line:

This also isn’t surprising, because typically you find
bugs when you start testing, and it can be difficult
without a proper infrastructure to begin testing before
everything is ready.

But what we also see here is that while bugs are most-
ly introduced during coding, they are almost never
found at that phase. What does it cost to fix these
bugs?

It becomes important to understand the difference it
costs to fix defects at each phase of development. This
is represented with a third line:

The Shift-Left Approach to Software Testing
By Arthur Hicken

14

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

Now it starts to get really interesting, as we see a nas-
ty progression of cost that dramatically increases the
later the defect is found. Letting a bug sneak through
to system testing is forty times the cost of finding it
during coding, or ten times more costly than finding
that same bug during unit testing. And it gets ridic-
ulously expensive when you look at the numbers for
letting bugs slip through to the actual deployment.

There are a few reasons for this cost escalation:

• The time and effort it takes to track down the prob-
lem. The more complex the test case is, the more
difficult it is to figure out which part of it is the real
troublemaker

• The challenge of reproducing defects on a develop-
er’s desktop as dependent systems like databases
or third-party APIs are brought in (it’s common for

organizations to experience a lag of several weeks
between defect detection and defect remediation in
these situations)

• The impact of the change that is needed to fix a
defect. If it’s a simple bug, it doesn’t matter so
much, but if you have it in many places, you’ve used
the wrong framework, or you’ve built code that isn’t
scalable enough for the expected load or that can’t
be secured, it’s a larger problem

The Reasons behind Shifting Left
Now look at the orange line on the graph below, as
it illustrates a proposed defect detection cycle that
is based on earlier testing. You can see the orange
detection curve growing larger on the cheap side of
things and smaller on the expensive side, giving us a
pretty significant cost reduction:

This shift left relies on a more mature development
practice, such as one based on the software testing
pyramid—developers create a set of unit tests that
cover the code reasonably well, and functional testers
and API testers do as much as they can and minimize
reliance on late-cycle testing, so you have just enough
manual and UI tests to prove that everything is work-
ing. This way, the late cycle tests are there to prove
functionality, not to find bugs. “Test early, test often”
is the mantra of teams shifting left.

Some organizations stop at this point. But you get
even more value when you push even further left, into
coding itself. After all, this is where bugs are intro-
duced, so let’s start looking for them while develop-
ment is still working.

This is where we benefit from static code analysis. You
can start finding bugs during the actual coding phase,
when the cost of finding bugs is as low as it can get.

Finding defects before testing begins is not only the
most cost-effective, but the most time-effective as
well, because it doesn’t leave developers with any
issues trying to reproduce bugs or understand the
failures. Being able to shrink a defect remediation cy-
cle from days or weeks to hours or minutes is tremen-
dously helpful.

15

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

https://blog.parasoft.com/how-to-enable-quality-at-speed-in-5-steps
https://blog.parasoft.com/how-to-enable-quality-at-speed-in-5-steps

Applying the Shift-Left Approach
So, how do you shift left? For the sake of brevity, the
shift left testing approach breaks down into two main
activities: applying development and testing best prac-
tices, and leveraging service virtualization to enable
continuous testing.

Doing earlier-stage development practices, such as
static code analysis and unit testing, helps you identify
and prevent defects earlier in the process. It’s import-
ant to remember that the goal is not to find bugs, but
to reduce the number of bugs, especially those that
make it into the release. Ultimately, creating fewer
bugs in the first place is far more valuable than find-
ing more bugs—and it’s a lot cheaper. See the graph
below, with the lovely reduced bubble on the left.

Coding standards are the software equivalent of en-
gineering standards, and they are key to reducing the
volume of bugs (in addition to finding bugs earlier)
and getting the most value out of your shift-left initia-
tive. Coding standards help you avoid bad, dangerous,
or insecure code through static code analysis.

For software security, it is especially important to
harden your software. You want to build security into
your code, not test it in. Coding standards let you
build a more secure application from the beginning
(i.e., making it secure by design), which is both a good
idea and a requirement, if you’re subject to regula-
tions like GDPR.

Next, you must take the tests that were created at
all stages of the development process, including the
later stages, and execute them continuously moving
forward. It is critical for teams that are adopting agile
development practices to provide continuous feed-
back throughout the development process. Unit tests
can easily be executed continuously, but shifting left
the execution of later-stage functional tests is often
difficult due to external system dependencies. This
is where you can leverage service virtualization to
enable continuous testing.

Service virtualization enables you to simulate depen-
dent systems that might have limited availability,

such as mainframes, third-party services, or perhaps
systems that just aren’t ready yet. By simulating them,
you can perform functional testing without having the
whole system available, and you can shift test execu-
tion left all the way to the development desktop.

In terms of performance testing, service virtualization
enables you to test before everything is ready, and
without having a complete lab of everything in the
system. You can even run all kinds of what-if scenari-
os, like what if the appserver is fast and the database
is slow (something difficult to make happen in the real
world)? Or what if my server starts throwing funny
errors, like a 500 error—how will that affect system
performance? You can push the system as hard as you
like and beyond, and do it as early as possible.

Similarly, you can start doing your security testing
earlier. Decoupling from physical systems allows you
to do something even more interesting: make the sim-
ulated systems behave in an evil fashion. Instead of
just poking at your system for tainted data and distrib-
uted denial-of-service (DDoS) attacks, you can have a
system flood you with packets, send malformed data,
or any of the many other exploits commonly used by
attackers. So not only can you test earlier, but you can
also test much deeper than is possible with a test lab
or production system.

16

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

https://blog.parasoft.com/using-static-analysis-to-security-design-in-gdpr
https://blog.parasoft.com/using-static-analysis-to-security-design-in-gdpr

Avoiding Mistakes and Traps
One danger in shifting defect detection into the cod-
ing phase is accidentally putting too much testing bur-
den on the software developers. The important thing
to remember as you look at the graph is that while the
cost of defect remediation gets drastically higher as
you go right, the resources on the left have possibly
the highest cost of any in the software lifecycle—not
to mention that you are taking them away from focus-
ing on developing functionality.

You don’t just want to find defects earlier; you want
to decrease the number of defects you’re putting into the
application in the first place.

And there’s another trap: If you were rewarding
people for finding and fixing bugs, now they will find
fewer—which is actually what you want, but only if you
did reduce the number of bugs you’re introducing.
Measuring the number of defects that make it into the
field is probably a more useful metric.

Improving Your Process and Product
By leveraging modern software testing technologies,
you can achieve software that is safe, reliable, and
secure. By shifting testing left along the software de-
velopment lifecycle, you can reduce the cost of testing
by finding bugs earlier, when it’s cheaper, while also
reducing the number of bugs you put into the code in
the first place. Try this approach to save time, money,
and headaches.

By leveraging modern software testing
technologies, you can achieve software

that is safe, reliable, and secure.

17

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

You’re excited about implementing a new web test
automation initiative, but suddenly, it hits you: Where
the heck do I start? Do I just starting writing tests?
What automation tool will I use? Should I set up some
kind of infrastructure? Do I write tests locally on my
machine and then port the environment over to some
staging environment? What hurdles should I consider
before I move forward? There are so many factors to
think about.

Before you take a step forward, let’s just take a step
back and consider what, exactly, you want to
accomplish.

Test automation is not a new concept. There are nu-
merous resources out there that discuss its pros and
cons, as well as many different approaches to achieve
successful test automation infrastructure.

Let me walk you through a scenario I went through
when I was given the responsibility of a new team and
getting the web automation test infrastructure up and

running. The end goal was defined, but it was com-
pletely up to me to decide what path I would take to
get there.

Here, I’ll discuss the hurdles, pitfalls, and successes I
encountered on my journey to build a new web auto-
mation test infrastructure at my company, along with
how we migrated our existing manual tests. Hopefully
when it’s all said and done, you can use my experi-
ence to streamline your process a bit more efficiently.

These are the milestones I defined to measure success
and the path my team took to establish our new web
test automation initiative.

Do Your Research
Like any other big task, you always want to start by
doing your due diligence and researching all of the
tools necessary.

The first issue to consider was what tool we would
use. Is it scalable? How’s the maintenance? Is it some-

Getting Your New Web Test Automation Up
and Running
By Daniel Garay

18

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

thing that can fit into the team’s existing ecosystem?
What would be the learning curve for those who
would maintain the automated tests? What about the
existing development team’s infrastructure—does
it integrate with that? And what are we going to do
about reporting? We had to consider the team’s famil-
iarity with existing tools within the company, as well
as who would maintain the test, both short- term and
long-term. We went over the same points regarding
what scripting language we’d be writing in.

After considering many factors, we decided to use an
API testing tool for web automation testing and an an-
alytics platform for reporting purposes. It addressed
the majority of our questions, it was easy to use, and
it didn’t require any prior knowledge of any program-
ming languages.

Every company, every team, and even every individual
will have a different set of questions to answer before
moving forward, but the main point is to try to get
as many of your questions answered up front rather
than later in order to reduce the bottlenecks you may
encounter up ahead.

Define the Scope and Coverage of the Tests
Next, what should you define as the scope of tests to
automate? Don’t be that person who tries to automate
everything. These are web functio-nal tests, so you

have to focus on the high-traffic areas and most com-
monly used parts of the application’s web interface to
get the most value out of your automated tests.

Because the application under test (AUT) was new to
me, I had to work with both developers and QA to un-
derstand the current test cases and manual smoke test
procedure. Their existing manual test cases were at a
higher level, for exploratory testing, so the QA engineer
couldn’t just point me to obvious test cases for automa-
tion. It was a constant collaboration in every sprint—
and even, at times, in our daily stand-ups—to make sure
we had the coverage we wanted to automate. Once the
scope was defined, we then prioritized the coverage
areas so I knew exactly what to work on first.

This is a good rule of thumb: Even if you know the ap-
plication, you should always work in collaboration with
the existing team when defining the scope.

Create and Maintain Automation Tests
With the infrastructure set up and both scope and
priorities defined, I could finally begin creating the
automated tests. I was excited to get to write my first
set of automated tests.

For this project, I started with using the browser play-
back feature to get a good understanding of my API
testing tool, then easily migrated to editing existing
browser playback tests and creating my own. I’m not
embarrassed to say that my first few tests were not
implemented in an ideal manner. But that’s how we all
learn—by trial and error.

My initial tests were very dependent on the environ-
ment, where they could only be executed in a specific
sequence. There was no setup or teardown as part of
my test. This obviously made it harder to maintain and
troubleshoot for other team members.

We started using the tool’s built-in capabilities to set
up and tear down tests, reuse existing tests (such as
shared tests as subsets of another test), and param-
eterize them so they could be portable in different
environments. It was easy to integrate REST API tests

It was a constant
collaboration in every
sprint—and even, at
times, in our daily stand-
ups—to make sure we
had the coverage we
wanted to automate.

19

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

within our web automation functional tests, which
made our life a heck of a lot easier to populate any
prerequisite data. Single sets of tests were executed
against different browsers seamlessly.

Occasionally we ran into a browser-specific issue, such
as being unable to perform a click action where an
element is not visible. But the tool’s powerful built-in
feature for different wait conditions, capability of ex-
ecuting arbitrary JavaScript, rich documentation, and
active user forum became a savior to us.

Publish the Results Transparently
The last goal I had identified was the reporting aspect
of the test results. Here, it’s all about visibility. This
wasn’t some secret formula I concocted and wanted
to keep to myself. On the contrary, I wanted everyone
to be aware of the results so that the whole team was
responsible for maintaining the tests.

I set up test results to be reported into
a reporting and analytics platform. I
was able to easily create a dashboard
with multiple gadgets to display the test
results, so they could be displayed on the
big TV screen within our development
department. This way the truth was
clearly visible.

The only way we would benefit from this
method of reporting down the line was
if we kept the test results at 100 percent
passing. Otherwise, it would just be noise
that no one cares about. Before I even
started, I had established with develop-
ment that this would be a team goal to
keep tests maintained. They all agreed,
and now, when I walk into the office every
morning, I can easily look up and see where we are
with the test results from the previous run.

Everyone Succeeds Together
Getting everything completed was never meant to be
a one-person job—nor did I want it to be. It took a lot
of collaboration and support from the team, including
management.

One thing I learned is that you must stay on top of the
tests. Keep them maintained and passing at 100 per-

cent. Your automated tests are like a living organism
that has to be looked after on a daily basis.

Do your research first before diving into the project
and you’ll be able to address some of the bottlenecks
ahead of time, and do not hesitate to optimize your
tests. All in all, this was a great learning experience for
me, and I look forward to getting thrown into another
team and repeating the same procedures to establish
an effective, transparent, and collaborative web test
automation initiative.

Your automated
tests are like a living
organism that has to
be looked after on a
daily basis.

20

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

On Getting Buy-In for Test Automation
“When you’re proposing automation, consider what the team needs are, then
determine how you can include automation in a way that balances those needs.
You’re more likely to get support if the benefits are more easily felt, so ask your
product owner or developers what’s important to them.”

~ Angela Riggs

On Effective Performance Test Reporting
“In theory, reporting performance test results should not be a problem at all.
Just present the results and indicate a pass or fail. But again, we don’t only
want to know the result; we want to get an idea of how the result relates to the
target. Crafting a report that is not overly complex but still delivers a complete
picture of the status is a balancing act.”

~ Michael Stahl

On the Risks of Shifting Testing Right
“To ensure testing in production works, more effort is needed than in the other
gears. Testing processes have to be defined close to perfectly and all work
should be automated, favoring the API layer. Whatever you forget to check will
be present in production, so an area that wasn’t covered in test could lead to
real damage.”

~ Maximilian Bauer

On the Need for Structured API Testing
“It is wise to test more important functions sooner and to spend more time on
crucial aspects of a product. That calls for having a structured model and for
having risks and priorities identified and monitored as the software develop-
ment project unfolds.”

~ Albert Gareev

On Automating Tests for Continuous Testing
“If your automated tests are meant to support continuous testing, they should
be able to run continuously or on demand. Whether you’re running them once a
day or once a minute, your tests should be ready to go and provide the required
feedback whenever you need it. Unfortunately, this is not always the case.”

~ Bas Dijkstra

On the Importance of Coherent Test Documentation
“Well-documented test cases become even more important when someone
other than the originator needs to use them, like a test automation engineer
who might not know the product features as well as you, or another tester who
might need to regression test the feature and has not worked with it much in
the past. You should ease the burden for the next person down the line by pro-
viding coherent test documentation.”

~ Steven Penella

Insight from around the Industry

21

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

Additional Resources
M O R E I N F O R M A T I O N F O R S O F T W A R E P R O F E S S I O N A L S

Continuous Testing for DevOps:
Evolving Beyond Automation

Testing Microservices

Accelerate Software Testing by
Sharing Test Assets Across Dev
and Test Teams

To Make API Testing Easier, Add
Machine Learning to Your AI

How to Move Beyond Record-
and-Replay for Better Automated
API Testing

What Is API Testing, and Are You
Doing It Right?

WHITE
PAPERS

BLOGS

22

SPECIAL REPORT: TESTING IN THE AGE OF AGILE AND DEVOPS

C O P Y R I G H T 2 0 1 9

3
How Do You Choose
the Right API Testing
Tool?

10
5 Key Factors to
Achieve Agile Testing
in DevOps

13
Performance Testing
for Our Modern,
DevOps World

14
The Shift-Left
Approach to Software
Testing

18
Getting Your New
Web Test Automation
Up and Running

21
Insight from around
the Industry

22
Additional Resources

https://alm.parasoft.com/continuous-testing-for-devops-evolving-beyond-automation?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=CTforDevOps
https://alm.parasoft.com/continuous-testing-for-devops-evolving-beyond-automation?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=CTforDevOps
https://alm.parasoft.com/testing-microservices?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=testingmicroservices
https://blog.parasoft.com/accelerate-software-testing-by-sharing-test-assets-across-dev-and-test-teams?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=sharetestassets
https://blog.parasoft.com/accelerate-software-testing-by-sharing-test-assets-across-dev-and-test-teams?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=sharetestassets
https://blog.parasoft.com/accelerate-software-testing-by-sharing-test-assets-across-dev-and-test-teams?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=sharetestassets
https://blog.parasoft.com/to-make-api-testing-easier-add-machine-learning-to-your-ai?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=addmltoai
https://blog.parasoft.com/to-make-api-testing-easier-add-machine-learning-to-your-ai?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=addmltoai
https://blog.parasoft.com/how-to-move-beyond-record-and-replay-for-better-automated-api-testing?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=apirecordreplay
https://blog.parasoft.com/how-to-move-beyond-record-and-replay-for-better-automated-api-testing?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=apirecordreplay
https://blog.parasoft.com/how-to-move-beyond-record-and-replay-for-better-automated-api-testing?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=apirecordreplay
https://blog.parasoft.com/what-is-api-testing-and-are-you-doing-it-right?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=whatisapitesting
https://blog.parasoft.com/what-is-api-testing-and-are-you-doing-it-right?utm_campaign=partners-2019&utm_source=techwell&utm_medium=eguide&utm_content=whatisapitesting

