
Applying Continuous Testing to
Continuous Delivery

As development teams move faster and project deadlines become more
aggressive, continuous delivery (CD) has emerged as a means of achieving
a higher bar for quality and a faster time to market. When implemented
successfully, continuous delivery can improve efficacy and reduce the number of
bugs that reach customers.

But for many teams, implementing a QA strategy that maps to continuous
delivery is challenging. Traditional testing tactics are designed for longer
development cycles, and can drag down the speed and efficiency of continuous
delivery. The continuous testing methodology provides a faster, scalable
approach to QA.

What is Continuous Testing?

In the Continuous Testing Manifesto, Russ Smith outlines the following
guidelines for continuous testing. A continuous testing process is one which:

•	 Aims for a modular system, built around small, manageable chunks;
•	 Takes a balanced, rightsized approach to testing;
•	 Measures the results of testing to show quality improvement;
•	 Begins testing as early as possible;
•	 Uses unit testing to enable fast, specific feedback;
•	 Applies version control best practices to QA processes;
•	 Uses continuous integration as an early safety valve for quality;
•	 Integrates QA with development tooling.

Applying Continuous Testing to CI/CD Processes
This guide provides an overview of how continuous testing practices can be
applied to continuous delivery. The following chapters explore how continuous
testing provides a more stable, scalable balance between the speed that teams
need to stay competitive with the quality they want to deliver to customers.

In This Guide:

1. Rightsizing Your QA 	
 Approach

2. Shifting Quality Left

3. Continuous Test 	
 Management

4. Integrations for CI/CD

5. Measuring QA Results

6. Key Takeaways

1

Teams that use
continuous delivery
as part of their
DevOps workflow
spend 21% less time
on unplanned work
and rework, and 44%
more time spent on
new work.

- State of DevOps
Report, 2017

https://www.rainforestqa.com/continuous-testing/?utm_campaign=applying-continuous-testing-to-continuous-delivery&utm_medium=referral&utm_source=ebook

How much testing is appropriate for continuous delivery?

Slower development methodologies can afford to err on the side of too much
testing; if you have a 2-week QA cycle, then the time required to execute a few
dozen additional tests is trivial overall. But more test cases require more time not
only to execute, but also to manage. Because continuous delivery cycles are so
fast, every task added to the process can greatly impact the total time required
to ship. Additionally, in cases where developers are heavily involved in QA
processes, the additional requirements for test writing and management eat into
time that could otherwise be used for developing new or improved features.

The ultimate goal of QA is to provide confidence in the quality of every release.
Finding the right amount of testing resources and time required to provide
you with enough confidence to ship — without slowing down development —
transforms QA from a bottleneck into an accelerator.

When Less is Better: Staying Focused on Quality Essentials

When it comes to continuous testing, less is often better. Less time spent testing
means less lag between developing a feature and delivering it to customers.
Fewer test cases means fewer opportunities for broken tests, and less noise in
the quality measurement. Eliminating unnecessary testing cycles and test cases
helps keep the testing process overall streamlined and easier to manage at scale.

To make your continuous testing as efficient as possible, focus on building a
core set of critical tests that can be executed quickly. These tests will form the
foundation of a test suite that focuses on gaining insight into quality that maps
more clearly to customer and business value.

In a webinar on Creating a Custom QA Strategy, Russ commented on how teams
should think about the relative value of their QA tests: “The most valuable tests
tend to be the highest level ones. The most difficult to maintain and get right —

Rightsize Your QA Strategy
Section One

2

Learn more about
developing a
streamlined test
suite in the webinar,
“Creating a Custom
QA Strategy.”

55% of teams claim
that they have
challenges managing
the size of test data
sets.

- HPE World Quality
Report, 2017-18

https://www.brighttalk.com/webcast/15641/291875
https://www.brighttalk.com/webcast/15641/291875

just because of the sheer volume of them — are the edge cases. Optimizing your
test suite creation to make sure you have all your bases covered with smoke
tests is critical.”

Best Practices for Building a Rightsized QA Strategy

Follow Your Users
Don’t test on all available platforms. Test what is used, and used most often:
from key features and user flows to the most popular browsers and devices. Start
small, focusing on what’s essential to the majority of users, and build out from
there. Your product team and your customer success team are great resources
to help you understand what belongs in your QA strategy and what does not.

Prune Your Test Suite Often
As your product evolves your users’ preferences and habits will, too. Regularly
assessing where your QA resources are being used keeps those resources
aligned with your business goals. Again, regularly checking in with the product
team is essential for understanding which test cases to keep (and what to cut)
over the course of time.

Focus On Development Goals
Focus on the execution methods and tools that will minimize overhead
appropriate to your team’s needs. If you’re aiming to release on a weekly basis
or longer, manual testing may meet your needs. If you want to move faster
than that — daily, hourly or more — solutions like automation and on-demand
platforms like Rainforest are more effective for returning fast results.

Measure to Improve
How do you know your testing strategy is in the right range? Measuring how
successful your strategy is is crucial. Be sure that you don’t get trapped in
distracting metrics, such as the number of tests in your database, or number
of test cases automated. We’ll cover this more in the section of this guide on
measuring QA.

3

Smoke Tests

Happy-Path Tests

Edge Cases

Most Critical

Least Critical

Easiest to Use

Most Difficult to Use

Regression Tests

Fig. 1
Functional testing
via Rainforest QA
executed in parallel
with unit tests.

Testing Prioritization Pyramid

How early can you start thinking about quality?

The earlier you find bugs, the faster you can resolve them. The later bugs are
found, the more they cost to fix and take more development time away from
your team. Shifting left to start the QA process as early as possible is the most
effective way to minimize QA cycles for continuous delivery.

Continuous delivery aims to ship code in small increments frequently, as soon
as possible; your testing process should mirror this “early and often” cadence.
Continuous testing should start as soon as a feature is in development. Some
teams start writing preliminary test cases during the feature spec process, then
amend the tests as needed after the feature is developed.

The Changing Role of QA Teams

Continuous delivery is often implemented by teams that are lean and fast-
moving. In some cases, that means that there’s a very small in-house QA team
(or none at all); 43% of organizations have a testing team of between 1-5 people
(Practitest State of Testing Report, 2017). Whether you have a QA team of one or
one hundred, the nature of continuous delivery will change the way that quality
must be approached.

Continuous testing is marked by close collaboration between development,
product and QA teams. There’s no months-long testing phase, because testing
must happen on an ongoing basis. As a result, the QA team must be well
integrated with development activities. Members of the QA team will need to
become more technical.

Functional Testing and Continuous Delivery

Unit testing is a critical component of any continuous integration process
because of the fast, specific feedback it provides early in the development
process. But teams overlook the value of starting functional testing early.

To learn more about
the skills that QA
teams need to be
successful, check out
our guide, “Level Up
Your QA Career.”

Shift Quality Left
Section Two

4

Early functional testing is as critical as unit testing to providing fast quality
feedback early in development. However, where unit testing is now
universally automated as part of the continuous integration process,
functional testing often still requires a more hands-on approach, whether
through writing automated test scripts or running tests manually.

Ideally, functional testing execution in a continuous delivery workflow
can be as hands-off as possible. Many teams use testing automation
tools like Selenium to execute tests automatically, but the management
of automated scripts can slow down deployment just like manual
test execution can. An alternative to automation is an on-demand
crowdsourced platform like Rainforest, which offloads execution without
the technical requirements of test scripting and maintenance.

Kicking off functional test execution in tandem with unit tests reduces
the time required for a full QA cycle and provides more context when
something breaks. For teams where developers own quality, this tandem
approach provides more holistic quality insights in a short time frame.

Who Owns Quality in Continuous Testing?

Whether you have an in-house QA team or not, continuous testing
spreads the quality assurance process across the entire development
lifecycle. As a result, implementing continuous testing for continuous
delivery requires consistent collaboration across teams. A product team
might own the initial test drafting when they write feature specs, while
developers write unit tests and refine functional tests after the feature is
built. In some organizations, features may be handed back to the product
team or QA team for test writing.

Regardless of the breakdown, speed is essential. Many teams find it useful
to have a quality facilitator -- someone who is responsible for keeping
track of the various moving pieces of a continuous testing process and
holds the team accountable for their respective parts

5

“You will need to
convince everybody
on the team to
genuinely embrace
whole-team
responsibility for
quality. Testing time
must be included
in estimates for
developer story work,
and must actually
be done. Do away
with the expectation
that others will catch
mistakes: you are not
there to be a safety
net or gatekeeper.”

-Mark Hrynczak,
Quality Assistance

Team Lead, Atlassian

Fig. 2
Functional testing
via Rainforest QA
executed in parallel
with unit tests.

Where Does QA Fit in DevOps?

How can you scale test case management for the speed of CD?

The best way to manage test suites is to think small and think dynamic. Because
code changes frequently for continuous delivery models, test cases and suites
must be easy and fast to manage, execute and update. Test case management to
fit the continuous delivery workflow and minimize the amount of time and effort
required to keep test cases updated.

Modular Test Cases

Even lightweight test case management can add up. Modular test cases
can be reused and updated easily, reducing the effort required to maintain
a healthy test suite. You’ll need a test case management system (TCM)

Continuous Test Case Management
Section Three

6

Fig. 3
An example of
modular testing
blocks and how they
can be applied to a
testing workflow

Blocks of Modular Tests
that supports composable tests.
Find a modular test writing and
management system that lets you
nest key flows within each other
and update core tests across the
entire database quickly.

Regardless of what TCM or
execution method you use,
break down test cases into small,
manageable chunks. Additionally,
focusing on building test cases
around functional areas (such as
features) helps ensure that your
team builds impact-based coverage

Workflow Test Suites

so your team spends less time on test management, and can execute and
maintain tests more effectively.

Version Control

Because continuous delivery necessitates frequent, small changes to
the codebase, corresponding test cases can easily become outdated.
Whether you have a database of test cases run manually or automation
scripts, frequent changes to the code will likely impact the accuracy of
your QA results overall if left unmonitored.

Version control is standard practice for development, but continuous
delivery requires it to become standard practice for testing as well. The
advantages of version control are similar for software testing and software
development; every version of the code will have associated test case
versions.

For teams where developers own or are heavily involved in the QA
process, using a version control system for test management helps ensure
that test cases and code are always aligned. Version control reduces the
flakiness of active test cases and helps teams better understand how their
test coverage has changed over time.

7

Learn more about this
topic in our webinar
on implementing
version control for QA
testing.

https://www.brighttalk.com/webcast/15641/282593
https://www.brighttalk.com/webcast/15641/282593

How can you make QA more consistent and less siloed?

Continuous delivery succeeds or fails depending on how well-automated
and well-integrated your development tools and processes are. The same
is true for continuous testing, which works most effectively when it is fully
integrated into the development and delivery process. There are a few key
points of integration into the development process that provide the best
results for continuous delivery:

Continuous Integration

Integrating your functional QA workflow into your CI server is one of
the most impactful things you can do to ensure the success of your
continuous testing process. The primary benefit of using a CI tool isn’t
speed but consistency. By kicking off your functional tests via CI alongside
your unit tests, you’ll have clean, consistent execution for a strong quality
baseline every single time.

To get the most out of using continuous integration for functional
testing, you’ll need your staging environment to be as close as possible
to production. As recommended in the section on Shifting Quality Left,
initiating automated functional test case execution at the same time as
unit test execution provides fast, actionable feedback with minimal effort.

Recommended:
CircleCI
Jenkins

Integrations for CI/CD Workflows
Section Four

8

Fig. 4
Key testing
integrations in the
continuous delivery
dev workflow

Workflow-Native Test Writing & Management

Unit testing is already well integrated into the development workflow for
CD, but functional testing is generally an afterthought for developers.
Context switching between writing code and writing tests on different
platform can take developers out of their flow and eats into work time.

Look for a test writing and management system that lets you add and
make changes to your test cases using a text editor. For teams where
developers are heavily involved in test writing, staying within their
workflow will improve overall adoption.

Issue Trackers

Issue trackers help your team triage, track and organize issues, so
integrating these platforms with the rest of your CD workflow is essential.
Because all information is ported in automatically, retaining context is
one of the biggest benefits of integrating test execution with your issue
tracker, reducing the time required to replicate and resolve issues.

One potential roadblock for automatically generated issues is that if the
team isn’t properly notified of them, they can potentially be ignored. Don’t
let automatically generated issues slip through the cracks. Using different
projects tags or other flags will help the team keep track of what needs
to be triaged, assigned to a developer, or addressed in some other way.
Organization also minimizes the time required to dig through duplicates.

Communication Apps

Many teams now use a communication app that isn’t specific to their QA
process. If your dev team is responsible for QA, having bug alerts in the
channels where they’re already spending time improves communication
and ensures that issues don’t go unnoticed.

To use communication apps for QA alerts most effectively, focus on
finding the right channel. For some teams, having a dedicated #bug-alerts
channel might be the best way to keep signal from getting lost in the
noise. For others, integrating those alerts into an existing channel might
be a better fit.

Having a timely plan for what to do with these alerts is also critical,
especially if these notifications will be the primary alert for new issues.
Identify who is responsible for following up on issues as they come in, and
make sure that a process is in place for triage and resolution to ensure
that issues are addressed quickly.

9

Top Choice:
Rainforest QA

Top Choices:
JIRA
Pivotal Tracker
Github Issues

Top Choice:
Slack

How can the impact of continuous testing be measured?

Measuring the success of your continuous testing process is essential to
improving it. Focusing on a streamlined set of metrics helps give your team,
your executive staff, and your board insight into the impact that your QA team is
having on business goals. Every team’s metrics will vary, but there are a few core
measurements that every team should start off with:

Measuring How Long Issues Take to Fix

Understanding how effective your team is at finding and resolving issues
is another essential area of QA measurement. These metrics will help you
understand how efficiently your QA team (or tools) are doing their job, as well as
how closely aligned your QA and development functions are. For organizations
aiming for continuous delivery, measuring the speed of your QA processes is a
necessary component of moving fast.

1. Time-to-Test
Turnaround time from kicking off a test run to getting results can mean the
difference between delivering continuously and being bottlenecked. Measuring
time-to-test will help you pinpoint exactly where your test suite is dragging
down overall QA turnaround time. Understanding which tests require the most
time to test will also provide insight into where automation or crowdsourcing
might be applied to the greatest impact.

2. Time-to-Fix
What happens after a bug is identified is also an important indicator of the
overall health of your QA process. For teams doing continuous delivery, it’s not
uncommon for developers to own their own issue triage and resolution. When
time-to-fix creeps higher for developer-owned QA processes, it can be an
indicator that devs don’t have time for proper bug fixing, or they aren’t having

““As we scaled up, we
found that we had a
lot of challenges with
our existing automated
CI tools, both in terms
of how long it took to
run those tests, and the
overall stability of those
test suites.

When a test takes 10
minutes to run and it
occasionally fails on
some flapping test
that’s ok, but when it
takes 40 minutes to run
and half of the tests are
flapping, then you can’t
trust your suite.” 4

-Matt Sanders,
SolarWinds

Measuring Quality
Section Five

10

issues surfaced to them effectively. For organizations with dedicated QA teams,
a long time-to-fix can be an indicator of communication breakdowns or more
significant process problems.

Measuring How Issues Effect Customers

Mapping your quality initiatives to business goals is essential to the long-term
success of any QA strategy. These measurements are often the ones that will
matter most to your exec staff and board members, and can create the most
compelling case for the future of continuous testing at your organization.

3. NPS
Net promoter score (NPS) is quickly becoming an industry standard for
measuring customer happiness, which can be mapped to product quality. There
are a lot of factors that go into a high (or low) NPS score, so it’s hard to draw a
straight line from QA to NPS. But used alongside other metrics, NPS can provide
a high-level, big-picture view of how successful your QA process is.

4. Escaped Defects
Even if you have thousands of test cases that return results in the blink of an
eye, if bugs are reaching customers, then there’s something missing from your
QA execution. Measuring how many defects slip through the cracks and make it
into product is one of the ultimate indicators of product quality. Be sure to track
where these bugs are being reported: internally, by customers, or by smoke tests
in production.

Measuring QA Efficiency

Some of your metrics should be focused on understanding the quality of your
test database. They will help you understand where your QA or dev team should
be spending their time, and help identify potential weak points before they
become issues for customers.

5. Test Coverage
Test coverage can be a bit of a red herring metric; it’s tempting to interpret
coverage as a “more is better” measurement and focus on the number of test
cases. Where test coverage is most useful is as more of a heat map, giving your
team insight into areas of the product that might be overlooked.

6. Flakiness
A major pitfall of many automated testing methods is that test cases are not
entirely reliable. If your test cases are lightning-fast but only provide reliable
results a portion of the time, they can become a major resource sink. Measuring
how frequently your test cases provide results you can have confidence in is an
essential metric for understanding whether your automation strategy is providing
ROI or not.

11

The average NPS for
a software company
is 41.

- Delighted.com

When implemented effectively, continuous testing has the ability to unlock the
full potential of fast-moving development teams and improve product quality at
the speed of continuous delivery.

Focus on Aligning Workflows
Continuous testing requires thoughtful, strategic integration of testing
throughout the development lifecycle. If there’s a QA team, they must be closely
aligned with both development and product teams to be effective.

Automate & Integrate as Much as Possible
Aim for ways to automate and offload work, rather than just changing the
nature of the task. Focus on automating processes and linking tools together as
efficiently as possible, without creating an excess of new work.

Get Cross-Functional Buy-In
Continuous testing requires collaboration across multiple disciplines. It’s
important for every team to understand the goals of continuous testing and how
it will impact top-line business goals.

About Rainforest QA

Rainforest is changing the way QA is done in an era of continuous delivery.
Our on-demand QA solution improves the customer experience by enabling
development teams to discover significantly more problems before code hits
production.

Hundreds of companies including Adobe, Oracle and Solarwinds use
Rainforest to automate their QA testing process and easily integrate it with
their development workflow via a simple API. Headquartered in San Francisco,
Rainforest is a 2012 Y Combinator graduate funded by Bessemer Venture
Partners and SVB Capital, among others.

Designing Your
Continuous Testing Strategy

12

Learn More about
Continuous Testing

To learn more about
how teams can use
continuous testing,
including a case study
of how Zenefits uses
continuous testing as
part of their continuous
delivery workflow,
download our guide
“Continuous Testing for
CTOs.”

