
WHITE PAPER

BY NIKOLAY ADVOLODKIN, SOLUTIONS ARCHITECT, SAUCE LABS

Agile development has reached a crossroads. Keenly aware of the need to deliver high-

quality web and mobile applications at speed, most organizations have adopted modern

agile development methodologies with the expectation that doing so will drive faster release

cycles, improve functional quality, and, ultimately, lead to better customer experiences.

Yet, for many organizations, release velocity has stalled, if not declined. According to a

recent report from Forrester, the percentage of organizations releasing software on an at

least a monthly basis declined from 36% in 2017 to 27% in 2018.1 Our collective efforts

to deliver better software faster have hit a roadblock, and automated testing is often the

reason why. In order to deliver quality applications at speed, organizations must overcome

their mounting automated testing challenges.

The Four Keys to Achieving
Parallelization in Automated Testing
A B R I E F O N B E S T P R A C T I C E S T O E N S U R E E A R LY P I P E L I N E T E S T I N G S U C C E S S

TABLE OF CONTENTS

3	 Parallelization: The Only Path Forward

3	 Requirement #1: Run Atomic Tests

4		 Atomicity Drives Stability

4	 Requirement #2: Keep Tests Autonomous

5	 Requirement #3: Correctly Manage Test Data

5	 Requirement #4: Avoid the Static Keyword

6	 Putting it All Together: Excellence Through

Automation

6	 About the Author

LEARN MORE AT SAUCELABS.COM PAGE 3

PARALLELIZATION: THE ONLY PATH FORWARD

At some point in their automated testing journeys, most organizations

encounter the same problem: as the number of tests in a suite starts to

grow, the suite starts taking too long to run. Testing is the foundation of agile

development, so once your suites start taking too long to run, your efforts to

deliver quality at speed eventually stall out.

Fortunately, there’s a clear solution: parallelization. Take the hypothetical

example of a suite of 100 tests, each of which takes two minutes to run. If

you can run those tests in parallel, you’ll complete your entire suite of tests

in just two minutes, enabling your developers to quickly get the feedback

they need. If, on the other hand, you’re unable to leverage parallelization,

that same suite of tests will take more than three hours to run, while your

developers wait unproductively.

Leveraging parallelization is the only way to successfully implement

automated testing. But most organizations immediately run into a number

of hurdles as they attempt to scale their automation efforts through parallel

testing. Let’s take a look at how to overcome those hurdles by examining the

four mandatory requirements for effective parallel testing.

REQUIREMENT #1: RUN ATOMIC TESTS

The most powerful and effective strategy for achieving parallelization is to run

atomic tests. Atomic tests asses just one single application feature. So, rather

than scripting a single test to validate that the login page loads, the user name

field displays, the password field displays, the logout displays, and items can

be added to a cart, a team leveraging atomicity would design five separate

tests that validate each of those functions individually.

The benefits of atomic tests are many. When I conduct automated testing

workshops, I often open by asking attendees to guess which of the following

test suites, each covering the same exact application features, will execute

faster: a test suite featuring 18 long-flow, end-to-end tests, or a suite using

180 atomic tests. The answer, to the surprise of most, is the suite featuring

180 atomic tests. In fact, when I run live demos using this exact scenario, the

suite featuring 180 atomic tests typically executes 8 times faster than the suite

with 18 long-flow tests!

PAGE 4LEARN MORE AT SAUCELABS.COM

Most organizations mistakenly assume that running longer tests in smaller

quantities is a faster approach than running atomic tests in larger quantities.

Thus, they attempt to combat longer-than-desired test run times by adding

more validations to their tests. Doing so only adds fuel to the fire. No matter

how much parallelization you apply, your test execution time will only be as fast

as the slowest test in your suite. So, if you have a suite of 30 tests, 29 of which

take 2 minutes to execute, and one of which takes 30 minutes to execute, you’ll

have to wait the full 30 minutes to get the results of every test in that suite.

Atomicity Drives Stability

Suites that leverage atomic tests are far more stable than those that don’t.

After all, every single validation request you add to a test is another chance

for something to go wrong. Atomic tests are also far easier to debug when

a test does fail. Because atomic tests execute much faster than longer tests,

developers are getting feedback on code they literally just wrote, making it

exponentially easier to go back and fix.

Moreover, since atomic tests focus on just one specific piece of application

functionality, there’s no ambiguity about what’s broken in the event of a

failed test. It can only be that one thing, and developers don’t have to waste

precious time rooting around for the source of the failure. By comparison,

when a non-atomic test fails, developers get no feedback on features

beyond the point of the failure. So, if you’re testing 50 different elements of

functionality within a single test, and the failure occurs at element 10, the

remaining 40 elements go untested.

REQUIREMENT #2: KEEP TESTS AUTONOMOUS

An autonomous test is one that can run completely independent of all the

other tests in your suite. Many teams make the mistake of designing a multi-

threaded process in which one test cannot successfully execute until its

predecessor has done the same. This means, for example, that in order to

execute a test validating the efficacy of your checkout function, you first have

to successfully execute tests for all of the functions that precede it in the

application workflow. It also means that once one test fails, all of the other

dependent tests will fail as well. This type of co-dependent approach is a non-

starter for effective parallel testing. Instead, make sure you design your tests

such that they can all run entirely on their own and in any order necessary.

PAGE 5LEARN MORE AT SAUCELABS.COM

REQUIREMENT #3: CORRECTLY MANAGE TEST DATA

To effectively implement parallel testing, you must be able to control your

test data. This is difficult to do even in the best of circumstances, as it

depends on more than just your automation engineers to execute. But it’s

especially difficult to do if you’re relying on traditional hard-coded test data,

the static nature of which is a poor fit for the dynamic nature of automated

testing. Instead, the best strategy is to leverage what’s known as just-in-time

data. With a just-in-time approach, you create test data, utilize it for a given

automated test suite, and then destroy it at the end of the test. This cuts down

on complexity and ensures that data from a previously executed test doesn’t

muddy the results of your current test.

REQUIREMENT #4: AVOID THE STATIC KEYWORD

The final mandatory requirement for effective parallel testing is to avoid

applying the “static” keyword to the WebDriver instance you’re managing

in your test scripts. Using the “static” keyword is the fastest way to kill your

parallelization dreams.

Identifying the WebDriver as “static” effectively ties the WebDriver instance to

the definition of the class, not instances of the class, which means that there

can only be one instance of WebDriver attached to (and shared between) all

of the tests in your suite. It’s like telling all the cars in the world that they have

to share a single steering wheel!

Some testers will work around this roadblock by people choosing to “fork”

the JVM process for each test in their suite, thus creating a new instance

of the entire test suite for every test. To extend the car metaphor, this

is like recognizing that your cars all share the same steering wheel and

compensating for it by creating a new planet Earth for each car you want to

put on the road. Not exactly the most efficient workaround.

Though use of the “static” keyword is technically acceptable in certain

situations, as a general rule, the best approach is to simply avoid it.

PAGE 6WP-26-102019

PUTTING IT ALL TOGETHER: EXCELLENCE THROUGH AUTOMATION

As you move through implementation of each of these critical requirements,

it’s important to always keep the end goal in mind. That end goal, of course,

is happy customers. In the modern age of digital business, the best and fastest

way to turn prospects into customers (and customers into loyal advocates)

is by rapidly delivering high-quality web and mobile applications. If you can

achieve parallelization in automated testing, that end goal is well within reach.

About the Author

Nikolay Advolodkin is a Solutions Architect at Sauce Labs. He has an

extensive background in software testing, quality assurance and test

automation as the CEO and Test Automation Instructor at UltimateQA.

com, a training site full of videos and resources covering the gamut of

testing topics and technologies.

ABOUT SAUCE L ABS

Sauce Labs is the leading provider of continuous testing solutions that deliver digital

confidence. The Sauce Labs Continuous Testing Cloud delivers a 360-degree view of

a customer’s application experience, ensuring that web and mobile applications look,

function, and perform exactly as they should on every browser, OS, and device, every

single time. Sauce Labs is a privately held company funded by Toba Capital, Salesforce

Ventures, Centerview Capital Technology, IVP, Adams Street Partners and Riverwood

Capital. For more information, please visit saucelabs.com.

SAUCE LABS INC. - HQ 116 New Montgomery Street, 3rd Fl San Francisco, CA 94105 USA

saucelabs.com/signup/trial

FREE TRIAL

https://saucelabs.com/
https://signup.saucelabs.com/signup/trial?campid=7011M0000013X6m&=utm_campaign=free+trial&utm_medium=qr&utm_source=sl

