Related Content
Breaking Down Apache’s Hadoop Distributed File System Apache Hadoop is a framework for big data. One of its main components is HDFS, Hadoop Distributed File System, which stores that data. You might expect that a storage framework that holds large quantities of data requires state-of-the-art infrastructure for a file system that does not fail, but quite the contrary is true. |
||
Lessons the Software Community Must Take from the Pandemic Due to COVID-19, organizations of all types have had to implement continuity plans within an unreasonably short amount of time. These live experiments in agility have shaken up our industry, but it's also taught us a lot of invaluable lessons about digital transformation, cybersecurity, performance engineering, and more. |
||
Comparing Apache Hadoop Data Storage Formats Apache Hadoop can store data in several supported file formats. To decide which one you should use, analyze their properties and the type of data you want to store. Let's look at query time, data serialization, whether the file format is splittable, and whether it supports compression, then review some common use cases. |
||
Code Integration: When Moving Slowly Actually Has More Risk Many decisions about code branching models are made in the name of managing risk, and teams sometimes pick models that make integration harder in the name of safety. Moving slowly and placing barriers to change can seem safer, but agile teams work best when they acknowledge that there is also risk in deferring change. |
||
Benefits of Using Columnar Storage in Relational Database Management Systems Relational database management systems (RDBMS) store data in rows and columns. Most relational databases store data row-wise by default, but a few RDBMS provide the option to store data column-wise, which is a useful feature. Let’s look at the benefits of being able to use columnar storage for data and when you'd want to. |
||
Choosing the Right Threat Modeling Methodology Threat modeling has transitioned from a theoretical concept into an IT security best practice. Choosing the right methodology is a combination of finding what works for your SDLC maturity and ensuring it results in the desired outputs. Let’s look at four different methodologies and assess their strengths and weaknesses. |
||
Comparing Apache Sqoop, Flume, and Kafka Apache Sqoop, Flume, and Kafka are tools used in data science. All three are open source, distributed platforms designed to move data and operate on unstructured data. Each also supports big data in the scale of petabytes and exabytes, and all are written in Java. But there are some differences between these platforms. |
||
Comparing XML and JSON: What’s the Difference? XML (Extensible Markup Language) and JSON (JavaScript Object Notation) are the two most common formats for data interchange. Although either can be used to receive data from a web server, there are differences that set them apart. Here are the abilities and support for each option so you can choose what works for you. |